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We study the renormalization of four-quark operators in one-loop perturbation theory. We employ a
coordinate-space gauge-invariant renormalization scheme (GIRS), which can be advantageous compared to
other schemes, especially in nonperturbative lattice investigations. From our perturbative calculations, we
extract the conversion factors between GIRS and the modified minimal subtraction scheme (MS) at the
next-to-leading order. As a by-product, we also obtain the relevant anomalous dimensions in the GIRS
scheme. A formidable issue in the study of the four-quark operators is that operators with different Dirac
matrices mix among themselves upon renormalization. We focus on both parity-conserving and parity-
violating four-quark operators, which change flavor numbers by two units (ΔF ¼ 2). The extraction of the
conversion factors entails the calculation of two-point Green’s functions involving products of two four-
quark operators, as well as three-point Green’s functions with one four-quark and two bilinear operators.
The significance of our results lies in their potential to refine our understanding of QCD phenomena,
offering insights into the precision of Cabibbo-Kobayashi-Maskawa (CKM) matrix elements and shedding
light on the nonperturbative treatment of complex mixing patterns associated with four-quark operators.
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I. INTRODUCTION

A crucial feature of the Standard Model (SM), which is
remarkably successful in accurately describing electroweak
and strong interactions at the fundamental level, is the fact
that the SM Lagrangian incorporates all pertinent operators
with dimensions D ≤ 4 and is a renormalizable quantum
field theory. These operators are constructed using the
elementary particle fields that have already been observed
and adhere to the principles of Lorentz invariance and gauge
symmetry. The potential influence of higher-dimensional
(D > 4) effective operators, not encompassed within the
SM Lagrangian, is anticipated to be inherently small. This
is due to their suppression by negative powers of the
high-energy scale M, characterizing physics beyond the
SM, expressed as M4−D, with allowances for logarithmic

correction. This suppression is rooted in the principles of
effective field theory, where new physics at a higher scale
inM can be systematically integrated out, leaving behind a
series of higher-dimensional operators in the low-energy
effective theory; see [1] for a classic review and [2,3] for
more recent reviews. In this framework, operators with a
dimension of D ¼ 6, such as the four-quark operators,
assume a particular significance; their impact is suppressed
by M−2, making them (along with the contributions of
D ¼ 5 operators, e.g., the Weinberg operator) prime
candidates for corrections to SM contributions. Thus,
these operators can contribute to processes that are either
forbidden or highly suppressed in the SM, offering a
window into potential new physics phenomena.
In the context of lattice simulations of pure QCD, scalar

and pseudoscalar four-quark operators naturally incorpo-
rate weak interaction effects. Furthermore, by the high
precision achieved in experimental CKM matrix element
measurements, the study of four-quark operators becomes
even more pertinent in the context of potential discoveries
at the Large Hadron Collider, such as new tetraquarks,
which have been of significant interest in recent exper-
imental results from the LHCb Collaboration [4–7]. Thus,
it is important to explore their properties numerically on
the lattice; this calls for a detailed investigation of the
corresponding four-quark operators. Calculating matrix
elements of four-quark operators in lattice QCD offers
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insights into a wide range of phenomena, including
electroweak decays of hadrons and beyond the Standard
Model physics; see, e.g., Refs. [8–12]. In particular,
phenomenological bag parameters [13] are important
lattice quantities associated with four-quark operators [13],
which, among others, are relevant in hadronic decays and
CP violation. One of the most widely studied bag
parameters is the so-called BK parameter that parametrizes
the neutral K0 − K̄0 meson oscillations [14–19]. Other
related studies can be found in Refs. [20–22].
One of the practical difficulties in calculating physical

matrix elements of four-quark operators is the mixing
encountered under renormalization, which is generally
complex: Depending on the flavor content of the four-
quark operators, mixing is allowed among operators of
equal and/or lower dimensions, which have the same
transformation properties under symmetries of the action.
Such mixing is especially challenging for lattice QCD
calculations, where symmetries are broken (e.g., Lorentz
symmetry is reduced to hypercubic symmetry, and chiral
symmetry is fully broken for Wilson-like fermion actions)
and which may further complicate the renormalization
procedure. In the simplest case of scalar and pseudoscalar
four-quark operators that change flavor number by two
units (ΔF ¼ 2), the calculation of four 5 × 5 mixing
matrices is required in order to address the mixing among
a complete basis of 20 four-quark operators as classified by
discrete symmetries (parity and flavor switching sym-
metries; see Sec. II A). This leads to the necessity of
determining 4 × 25 ¼ 100 nontrivial renormalization coef-
ficients (some of them are zero according to the discrete
symmetries). Note that, by employing chiral symmetry, the
mixing pattern is further simplified, leading to additional
zero elements in the mixing matrices for parity-even
operators, as happened in dimensional regularization, in
the minimal subtraction (MS) scheme. However, in the
general case of a regularization-independent scheme which
does not impose chirally invariant conditions, applicable
in both continuum and lattice regularizations, the mixing
sets are not decreased. For this purpose, the current study
does not employ chiral symmetry in determining mixing
patterns.
The renormalization and mixing of four-quark operators

with different flavor content have been investigated
before in various perturbative and nonperturbative studies
using MS [23–26], regularization-invariant momentum
subtraction (RI0=MOM) [13,17,23,27–29], RI0=symmetric
MOM [16,30–33], and Schrödinger functional [34–44]
schemes. In this work, we revisit the renormalization of
the four-quark operators by employing a gauge-invariant
renormalization scheme (GIRS) [45], which involves
Green’s functions of gauge-invariant operators in coor-
dinate space. A similar recent study using coordinate-
space renormalization prescription has been implemented

in [46]. GIRS is a promising renormalization prescription
that does not encounter issues in lattice studies related to
gauge fixing. Our goal is to provide appropriate renorm-
alization conditions, which address the mixing of the
four-quark operators and which are applicable in non-
perturbative calculations on the lattice, as well as to
provide the conversion factors between our proposed
prescription and the MS scheme (typically used in
phenomenology). The conversion factors are regulariza-
tion independent, and thus, one can compute them in
dimensional regularization (DR), where perturbative com-
putation can be performed more readily and in higher-loop
order. To this end, we calculate the first quantum corrections
for appropriate two- and three-point Green’s functions in
coordinate space using DR. We focus on the renormaliza-
tion of four-quark operators, which are involved in flavor-
changingΔF ¼ 2 processes. These are categorized into two
sets of parity-conserving and two sets of parity-violating
operators. The two-point functions involve the product of
two four-quark operators positioned at a nonzero distance in
coordinate space. The three-point functions include the
product of one four-quark operator and two quark bilinear
operators located at three different space time points. For
determining all renormalization coefficients, a number of
three-point functions are involved in the renormalization
conditions.
The paper is organized as follows: Section II outlines the

formulation of our calculation, including the definitions of
the operators under study and their symmetry properties.
Also, a detailed description of the calculated Green’s
functions is provided, along with general renormalization
conditions in GIRS and the definition of the conversion
matrices between GIRS and MS schemes. In Sec. III, we
collect a number of prototype Feynman integrals appearing
in our calculation for both two- and three-point Green’s
functions, and we give some details regarding the method-
ology that we follow for their computation. Section IV
presents our main results for the MS-renormalized Green’s
functions, along with the corresponding mixing matrices.
A detailed discussion follows regarding the selection of a
suitable set of renormalization conditions in GIRS among a
large number of acceptable GIRS variants. The conversion
matrices between the selected version of GIRS and the MS
scheme are presented; additional information for extracting
conversion matrices for any other version of GIRS is also
provided. As a by-product of our calculation, we also
provide the next-to-leading order anomalous dimensions
of the operators under study in the GIRS scheme. To make
our results easily accessible to the reader, we include a
Mathematica file in Supplemental Material [47] containing
the one-loop expressions of the MS-renormalized Green’s
functions under study in electronic form. Finally, in Sec. V,
we summarize our findings and suggest potential extensions
for future research.
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II. FORMULATION

In this section, we briefly introduce the formulation of
our study, along with the notation utilized throughout the
paper. We provide definitions of the four-quark operators,
as well as their transformation properties under parity,
charge conjugation, and flavor exchange symmetries.
These symmetries allow mixing between specific groups
of operators, which arise at the quantum level. GIRS is
outlined for the renormalization of quark operators, which
is constructed to be regularization independent and thus
also applicable in lattice regularizations that break chiral
symmetry. We describe appropriate Green’s functions for
studying the renormalization of four-quark operators in
GIRS, the implied renormalization conditions, and we
define the conversion matrices between GIRS and MS
scheme. There are multiple possibilities for defining GIRS,
each leading to different conversion matrices; we present
one of them in Sec. IV while further options can be
extracted by our results.
Our calculations are performed within the framework of

quantum chromodynamics (QCD). The action of QCD in
Euclidean spacetime is given by

SQCD ¼
Z

d4x

�
1

4
Fa
μνFa

μν þ
X
f

ψ̄fðγμDμ þmfÞψf

�
; ð1Þ

where Fa
μν represents the gluon field-strength tensor, ψ

denotes the quark field of flavor f, and Dμ is the covariant
derivative, which accounts for the interaction of quarks
with the gluon (Aμ) fields: Dμψ ¼ ∂μψ þ igAμψ ; g is the
coupling constant.
Note that we use a mass-independent scheme, and thus,

the masses mf are set to zero.

A. Definition of the four-quark operators and their
symmetry properties

We investigate four-quark composite operators of the
form

OΓΓ̃ ≡ ðψ̄f1Γψf3Þðψ̄f2 Γ̃ψf4Þ

≡
 X

a

X
α;β

ψ̄a
α;f1

ðxÞΓαβψ
a
β;f3

ðxÞ
!

×

 X
a0

X
α0;β0

ψ̄a0
α0;f2

ðxÞΓ̃α0β0ψ
a0
β0;f4

ðxÞ
!
; ð2Þ

where Γ and Γ̃ denote products of Dirac matrices

Γ; Γ̃∈f1; γ5; γμ; γμγ5;σμν; γ5σμνg≡ fS;P;V;A;T; T̃g; ð3Þ

and σμν ¼ 1
2
½γμ; γν�; spinor indices are denoted by Greek

letters (α; β; α0; β0), while color and flavor indices are

denoted by Latin letters (a, a0) and fi, respectively. In
our study, we focus on four-quark operators with Γ ¼ Γ̃ and
Γ ¼ Γ̃γ5 (repeated Lorentz indices are summed over),
which are scalar or pseudoscalar quantities under rotational
symmetry.
One complication in the study of these operators is that

mixing is allowed among four-quark operators with differ-
ent Dirac matrices under renormalization, as dictated by
symmetries. In order to study the mixing of the four-quark
operators at the quantum level, it is convenient to construct
operators with exchanged flavors of their quark fields
[cf. Eqs. (2) and (4)], which are related to the original
operators through the Fierz-Pauli-Kofink identity (the
superscript letter F stands for Fierz),

OF
ΓΓ̃ ≡ ðψ̄f1Γψf4Þðψ̄f2 Γ̃ψf3Þ; ð4Þ

where color and spinor indices are implied.
We considered the symmetries of the QCD action: parity

P, charge conjugation C, flavor exchange symmetry
S ≡ ðf3 ↔ f4Þ, flavor switching symmetries S0 ≡ ðf1 ↔
f3; f2 ↔ f4Þ and S00 ≡ ðf1 ↔ f4; f3 ↔ f2Þ, with four
mass-degenerate quarks [48]. Chiral symmetry can be
violated in some regularizations, and thus, it is not consid-
ered in the present study for identifying the mixing pattern.
In particular, the operator-mixing setup which follows is
also applicable in lattice regularizations that break chiral
symmetry (such as Wilson fermions). Operators with the
same transformation properties under these symmetries can
and will mix. The parity P and charge conjugation C
transformations on quarks and antiquarks are defined as
follows:

TABLE I. Transformations of the four-quark operators OΓΓ̃
under P, CS0, CS00, CPS0, and CPS00 are noted. The operators
OT̃T and OT̃ T̃ are not explicitly shown in the above matrix, as
they coincide with OTT̃ andOTT , respectively. For the Fierz four-
quark operators OF

ΓΓ̃, we must exchange the columns CS0 → CS00

and CPS0 → CPS00.

P CS0 CS00 CPS0 CPS00

OVV þ þ þ þ þ
OAA þ þ þ þ þ
OPP þ þ þ þ þ
OSS þ þ þ þ þ
OTT þ þ þ þ þ
O½VAþAV� − − − þ þ
O½VA−AV� − − þ þ −
O½SP−PS� − þ − − þ
O½SPþPS� − þ þ − −
OTT̃ − þ þ − −
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Parity∶

(
PψfðxÞ ¼ γ4ψfðxPÞ
Pψ̄fðxÞ ¼ ψ̄fðxPÞγ4;

ð5Þ

Charge conjugation∶

(
CψfðxÞ ¼ −Cψ̄T

f ðxÞ
Cψ̄fðxÞ ¼ ψT

f ðxÞC;
ð6Þ

where xP ¼ ð−x; tÞ, T means transpose, and the matrix C
satisfies ðCγμÞT ¼ Cγμ, CT ¼ −C, and C†C ¼ 1. The
transformations of the four-quark operators of Eqs. (2)
and (4) are shown in Table I. Note that different combi-
nations of the original operators are considered, which are
odd/even under the P, CS0, CS00, CPS0, and CPS00
transformations.

The new basis of operators can be further decomposed
into smaller independent bases according to the discrete
symmetries P; S; CPS0; CPS00. Following the notation of
Ref. [27], the 20 operators of Table I (including the Fierz
operators) are classified into four categories:
(a) parity-conserving (P ¼ þ1) operators with S ¼ þ1:

QS¼þ1
i , ði ¼ 1; 2;…; 5Þ,

(b) parity-conserving (P ¼ þ1) operators with S ¼ −1:
QS¼−1

i , ði ¼ 1; 2;…; 5Þ,
(c) parity-violating (P ¼ −1) operators with S ¼ þ1:

QS¼þ1
i , ði ¼ 1; 2;…; 5Þ,

(d) parity-violating (P ¼ −1) operators with S ¼ −1:
QS¼−1

i , ði ¼ 1; 2;…; 5Þ,
which are explicitly given as follows:

8>>>>>>>>><>>>>>>>>>:

QS¼�1
1 ≡ 1

2
½OVV �OF

VV � þ 1
2
½OAA �OF

AA�
QS¼�1

2 ≡ 1
2
½OVV �OF

VV � − 1
2
½OAA �OF

AA�
QS¼�1

3 ≡ 1
2
½OSS �OF

SS� − 1
2
½OPP �OF

PP�
QS¼�1

4 ≡ 1
2
½OSS �OF

SS� þ 1
2
½OPP �OF

PP�
QS¼�1

5 ≡ 1
2
½OTT �OF

TT �;

n
QS¼�1

1 ≡ 1
2
½OVA �OF

VA� þ 1
2
½OAV �OF

AV �;(
QS¼�1

2 ≡ 1
2
½OVA �OF

VA� − 1
2
½OAV �OF

AV �
QS¼�1

3 ≡ 1
2
½OPS �OF

PS� − 1
2
½OSP �OF

SP�;(
QS¼�1

4 ≡ 1
2
½OPS �OF

PS� þ 1
2
½OSP �OF

SP�
QS¼�1

5 ≡ 1
2
½OTT̃ �OF

TT̃
�:

ð7Þ

Note that a summation over all independent Lorentz indices (if any) of the Dirac matrices is understood. The operators of
Eq. (7) are grouped together according to their mixing pattern. Therefore, the mixing matrices ZS¼�1 (ZS¼�1), which
renormalize the parity-conserving (violating) operators, take the following form:

ZS¼�1 ¼

0BBBBBBB@

Z11 Z12 Z13 Z14 Z15

Z21 Z22 Z23 Z24 Z25

Z31 Z32 Z33 Z34 Z35

Z41 Z42 Z43 Z44 Z45

Z51 Z52 Z53 Z54 Z55

1CCCCCCCA

S¼�1

; ZS¼�1 ¼

0BBBBBBB@

Z11 0 0 0 0

0 Z22 Z23 0 0

0 Z32 Z33 0 0

0 0 0 Z44 Z45

0 0 0 Z54 Z55

1CCCCCCCA

S¼�1

: ð8Þ

The renormalized parity-conserving (violating) operators
Q̂S¼�1 (Q̂S¼�1) are defined via the equations

Q̂S¼�1
l ¼ ZS¼�1

lm ·QS¼�1
m ; Q̂S¼�1

l ¼ZS¼�1
lm ·QS¼�1

m ; ð9Þ

where l; m ¼ 1;…; 5 (a sum over m is implied).
Note that the mixing pattern of the parity-conserving

operators is reduced when chiral symmetry is considered,
leading to smaller mixing blocks similar to those of parity-
violating operators. Therefore, it is expected that the
renormalization matrices for the two parity sectors take a
block-diagonal form in dimensional regularization, in the
MS scheme. However, this is not true for our proposed
gauge-invariant scheme which does not impose chiral
symmetry. As a result, the renormalization matrix in
(DR,GIRS) for the parity-conserving operators does not

preserve the block-diagonal form, even though the regu-
lator (DR) preserves chiral symmetry. This means that an
additional finite mixing will be obtained in (DR, GIRS)
among operators which can behave differently under chiral
transformations.
In principle, the four-quark operators can also mix with a

number of lower-dimensional operators, which have the
same symmetry properties. However, in this work, we
focus on operators with ΔF ¼ 2; thus, f1 ∉ ff3; f4g and
f2 ∉ ff3; f4g, which forbid such additional mixing.

B. Renormalization in GIRS

In this work, the GIRS scheme [45] is employed for
extracting the renormalization matrices ZS¼�1 and ZS¼�1.
GIRS is an extension of the X-space scheme [49–52], in
which Green’s functions of products of gauge-invariant
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operators at different spacetime points are considered. In
the case of a multiplicatively renormalizable operator O, a
typical condition in GIRS has the following form:

ðZGIRS
O Þ2hOðxÞO†ðyÞijx−y¼z̄ ¼ hOðxÞO†ðyÞitreejx−y¼z̄;

ð10Þ

where z̄ is a nonzero renormalization four-vector scale.
Green’s function hOðxÞO†ðyÞi is gauge independent, and
thus, a nonperturbative implementation of such a scheme
on the lattice avoids gauge fixing altogether and the
numerical simulation becomes more straightforward and
statistically robust without the issue of Gribov copies.
(Note that GIRS is not a unique gauge-independent
scheme. While the MS and RI0 families of schemes do
require gauge fixing, there are other nonperturbative
schemes, such as the Schrödinger functional family, which
do not.) When operator mixing occurs, one needs to
consider a set of conditions involving more than one
Green’s functions of two or more gauge-invariant oper-
ators, each of which has a similar form to Eq. (10), i.e., the
renormalized Green’s functions are set to their tree-level
values when the operators’ space-time separations equal
specific reference scales.
In our study, the determination of the 5 × 5 mixing

matrices of Eq. (8) requires the calculation of (i) two-point
Green’s functions with two four-quark operators and
(ii) three-point Green’s functions with one four-quark
operator and two lower-dimensional operators, e.g., quark
bilinear operators OΓðxÞ ¼ ψ̄f1ðxÞΓψf2ðxÞ. All operators
are placed at different spacetime points, in a way as to avoid
potential contact singularities,

G2pt
OΓΓ̃;OΓ0 Γ̃0

ðzÞ≡ hOΓΓ̃ðxÞO†
Γ0Γ̃0 ðyÞi; z≡ x− y; x ≠ y;

ð11Þ

G3pt
OΓ0 ;OΓΓ̃;OΓ00

ðz; z0Þ≡ hOΓ0 ðxÞOΓΓ̃ðyÞOΓ00 ðwÞi; z≡ x− y;

z0≡ y−w; x≠ y≠w≠ x: ð12Þ

Two-point Green’s functions with one four-quark operator
and one bilinear operator are not considered since they

vanish when ΔF ¼ 2. In principle, the perturbative calcu-
lation of the Green’s functions of Eqs. (11) and (12) can be
performed for generic Dirac matrices Γ; Γ̃;Γ0; Γ̃0;Γ00, which
do not lead to vanishing result. However, when construct-
ing the renormalization conditions, we specify the Dirac
matrices for both four-quark (Qi andQi combinations) and
bilinear operators (see Sec. II C).
In order to determine a consistent and solvable set of

nonperturbative renormalization conditions, we need to
examine multiple choices of three-point functions with
different bilinear operators. Also, since there is no unique
way of selecting solvable conditions in GIRS, a perturba-
tive calculation of all possible Green’s functions will be
useful for determining conversion factors from different
variants of GIRS to the MS scheme. To this end, we
calculate the Green’s functions of Eqs. (11) and (12), up to
one-loop order and in DR.
The Feynman diagrams contributing to the two-point

functions of the four-quark operators are shown in Fig. 1(a)
to order Oðg0Þ and in Figs. 1(b)–1(d) to order Oðg2Þ.
Likewise, the Feynman diagrams contributing to the three-
point Green’s functions of the product of one four-quark
operator and two quark bilinear operators are shown in
Fig. 2. For simplicity, we have not drawn separate diagrams
to specify which quark/antiquark appearing in the definition
of the four-quark operators is contracted in each fermion
propagator. Thus, in each diagram, it is understood that all
possible ways of contracting the quark/antiquark fields of
the operators are summed over. The Oðg2Þ [and Oðg0Þ]
contributions for each Green’s function are gauge indepen-
dent; indeed, terms dependent on the gauge parameter
cancel out upon the summation of the Feynman diagrams.
There are numerous possible variants of GIRS, depend-

ing on which Green’s functions and which renormalization
four-vectors are selected for imposing renormalization
conditions. A variant of choice, which is expected to result
in reduced statistical noise in lattice simulations, includes
integration (summation on the lattice) over time slices of
the operator-insertion points in all Green’s functions,

G̃2pt
OΓΓ̃;OΓ0 Γ̃0

ðz4Þ≡
Z

d3z⃗G2pt
OΓΓ̃;OΓ0 Γ̃0

ðz⃗; z4Þ; z4 > 0; ð13Þ

(a) (b) (c) (d)

FIG. 1. Feynman diagrams contributing to hOΓΓ̃ðxÞO†
Γ0Γ̃0 ðyÞi, to order Oðg0Þ (a) and Oðg2Þ (b)–(d). Wavy (solid) lines represent

gluons (quarks). Diagrams (b), (d) have also mirror variants.
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G̃3pt
OΓ0 ;OΓΓ̃;OΓ00

ðz4; z04Þ≡
Z

d3z⃗
Z

d3 z0
!
G3pt

OΓ0 ;OΓΓ̃;OΓ00
ððz⃗; z4Þ; ð z0

!
; z04ÞÞ; z4 > 0; z04 > 0: ð14Þ

We have employed this variant in a number of previous
studies of our group regarding the renormalization of
fermion bilinear operators [45], the study of mixing
between the gluon and quark energy-momentum tensor
operators [45], as well as the renormalization of super-
symmetric operators, such as gluino-glue [53] and super-
current [54] in N ¼ 1 supersymmetric Yang-Mills theory.

C. Renormalization conditions

In the case of the parity-conserving operators (Qi), the
mixing matrix is 5 × 5 for both S ¼ þ1 and S ¼ −1.
Therefore, for each case, we need 25 conditions to obtain
these mixing coefficients. Computing the relevant two-
point Green’s functions, we extract 15 conditions, and
therefore, we need another 10 conditions that will be

extracted from the relevant three-point Green’s functions. The 15 conditions in GIRS, which include two-point
Green’s functions, are the following:

½G̃2pt
QS¼�1

i ;QS¼�1
j

ðtÞ�GIRS ≡ X5
k;l¼1

ðZS�1
ik ÞGIRSðZS�1

jl ÞGIRSG̃2pt
QS¼�1

k ;QS¼�1
l

ðtÞ ¼ ½G̃2pt
QS¼�1

i ;QS¼�1
j

ðtÞ�tree; ð15Þ

where i, j runs from 1 to 5 and i ≤ j; z4 ≔ t is the GIRS renormalization scale. We have a variety of options for selecting the
remaining conditions involving three-point Green’s functions,

½G̃3pt
OΓ;QS¼�1

i ;OΓ
ðt; t0Þ�GIRS ≡ ðZGIRS

OΓ
Þ2
X5
k¼1

ðZS�1
ik ÞGIRSG̃3pt

OΓ;QS¼�1
k ;OΓ

ðt; t0Þ ¼ ½G̃3pt
OΓ;QS¼�1

i ;OΓ
ðt; t0Þ�tree; ð16Þ

where i∈ ½1; 5�, Γ∈ f1; γ5; γμ; γμγ5; σμνg, and z4 ≔ t, z04 ≔
t0 are GIRS renormalization scales. In this case, the two
bilinears must be the same in order to obtain a nonzero
Green’s function. ZGIRS

OΓ
is the renormalization factor of the

bilinear operator OΓ calculated in Ref. [45].

In order to avoid having more than one renormalization
scale, a natural choice is to set t0 ¼ t; in this way, the
original set of two four-vector renormalization scales [given
by specific values of z and z0, cf. Eqs. (11) and (12)],
following integration over time slices and setting t0 ¼ t, is

(a)

(d) (e)

(b) (c)

FIG. 2. Feynman diagrams contributing to hOΓ0 ðxÞOΓΓ̃ð0ÞOΓ00 ðyÞi, to order Oðg0Þ (a) and Oðg2Þ (b)–(e). Wavy (solid) lines represent
gluons (quarks). A circled cross denotes the insertion of the four-quark operator, and the solid squares denote the quark bilinear
operators. Diagrams (b)–(e) have also mirror variants.
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reduced to just one real variable. Changing the values of t
and/or t0 would obviously affect the results for the non-
perturbative Green’s functions in Eqs. (15) and (16);
nevertheless, after multiplication by the appropriate con-
version factors, one should arrive at the same MS-
renormalized Green’s functions, independent of t and t0

(assuming that various standard sources of systematic
error are under control). This then provides a powerful
consistency check for the renormalization of four-quark
operators.
As we conclude, by doing the perturbative calculation,

not all sets of conditions given in Eqs. (15) and (16) can
lead to viable solutions. We will provide a feasible choice
in Sec. IV. In practice, one can choose the specific
conditions that provide a more stable signal in numerical
simulations.

In the case of the parity-violating operators (Qi), the
5 × 5mixing matrix is block diagonal for both S ¼ þ1 and
S ¼ −1, as dictated by symmetries. In particular, there are
three mixing subsets: fQ1g, fQ2;Q3g, and fQ4;Q5g, for
each S. The first subset includes only one operator, which is
multiplicatively renormalizable; thus, only one condition is
needed and can be obtained from the two-point functions.
The second and third subsets include two operators, and
thus, four conditions are needed for each subset to obtain
the mixing coefficients. Three of them will be extracted
from the two-point functions, while the remaining one
condition requires the calculation of three-point Green’s
functions. Thus, in total, we need nine conditions for each
S: seven will be extracted from two-point Green’s func-
tions, and two will be extracted from three-point Green’s
functions. The seven conditions that include two-point
Green’s functions are the following:

½G̃2pt
QS¼�1

1
;QS¼�1

1

ðtÞ�GIRS ≡ ½ðZS�1
11 ÞGIRS�2G̃2pt

QS¼�1
1

;QS¼�1
1

ðtÞ ¼ ½G̃2pt
QS¼�1

1
;QS¼�1

1

ðtÞ�tree; ð17Þ

½G̃2pt
QS¼�1

i ;QS¼�1
j

ðtÞ�GIRS ≡ X3
k;l¼2

ðZS�1
ik ÞGIRSðZS�1

jl ÞGIRSG̃2pt
QS¼�1

k ;QS¼�1
l

ðtÞ ¼ ½G̃2pt
QS¼�1

i ;QS¼�1
j

ðtÞ�tree; ði; j ¼ 2; 3Þ; ð18Þ

½G̃2pt
QS¼�1

i ;QS¼�1
j

ðtÞ�GIRS ≡ X5
k;l¼4

ðZS�1
ik ÞGIRSðZS�1

jl ÞGIRSG̃2pt
QS¼�1

k ;QS¼�1
l

ðtÞ ¼ ½G̃2pt
QS¼�1

i ;QS¼�1
j

ðtÞ�tree; ði; j ¼ 4; 5Þ: ð19Þ

Note that in the above equations i ≤ j. The two conditions that include three-point functions can be

½G̃3pt
OΓ;QS¼�1

i ;OΓγ5
ðt; t0Þ�GIRS ≡ ZGIRS

OΓ
ZGIRS
OΓγ5

X3
k¼2

ðZS�1
ik ÞGIRSG̃3pt

OΓ;QS¼�1
k ;OΓγ5

ðt; t0Þ

¼ ½G̃3pt
OΓ;QS¼�1

i ;OΓγ5
ðt; t0Þ�tree; ði ¼ 2 or 3Þ; ð20Þ

½G̃3pt
OΓ;QS¼�1

i ;OΓγ5
ðt; t0Þ�GIRS ≡ ZGIRS

OΓ
ZGIRS
OΓγ5

X5
k¼4

ðZS�1
ik ÞGIRSG̃3pt

OΓ;QS¼�1
k ;OΓγ5

ðt; t0Þ

¼ ½G̃3pt
OΓ;QS¼�1

i ;OΓγ5
ðt; t0Þ�tree; ði ¼ 4 or 5Þ; ð21Þ

where Γ∈ f1; γμ; σμνg. In this case, the two bilinears must
differ by γ5 in order to obtain a nonzero Green’s function.
As in the parity-conserving operators, we simplify the
conditions by setting t0 ¼ t. It is not guaranteed that all
possible choices can give a solution to the system of
conditions. We test all options, and we provide the choices
that can work in Sec. IV.

D. Conversion matrices and anomalous dimensions

In order to arrive at the renormalized four-quark oper-
ators in the more standard MS scheme (which is the typical

scheme used in phenomenological work), the conversion

matrices ðCS¼�1ÞMS;GIRS and ðC̃S¼�1ÞMS;GIRS between
GIRS and MS schemes are necessary,

ðZS¼�1ÞMS ¼ ðCS¼�1ÞMS;GIRSðZS¼�1ÞGIRS;
ðZS¼�1ÞMS ¼ ðC̃S¼�1ÞMS;GIRSðZS¼�1ÞGIRS: ð22Þ

These can be computed only perturbatively due to the very
nature of MS. Being regularization-independent, they are
evaluated more easily in DR. The one-loop expressions of
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the conversion matrices for different variants of GIRS are
extracted from our calculations and are given in Sec. IV D
for a selected version of GIRS. The conversion matrices,
along with the lattice mixing matrices in GIRS, calculated
nonperturbatively, allow the extraction of the lattice mixing
matrices in the MS scheme.
A by-product of our calculation is the determination of

the next-to-leading order (NLO) anomalous dimensions of
the four-quark operators in GIRS. Using standard notation,
we define (in terms of the renormalization scale μ) the
Callan-Symanzik equations satisfied by the renormalized
gauge coupling gR and the renormalized four-quark oper-
ators in an arbitrary renormalization scheme (denoted
by “R”),

μ
d
dμ

gRðμÞ ¼ βRðgRðμÞÞ; ð23Þ

μ
d
dμ

Q̂S¼�1;R
i ¼

X
j

γ�;R
ij ðgRðμÞÞQ̂S¼�1;R

j ; ð24Þ

μ
d
dμ

Q̂S¼�1;R
i ¼

X
j

γ̃�;R
ij ðgRðμÞÞQ̂S¼�1;R

j : ð25Þ

Also, we define the perturbative expansions of the β
function, the anomalous dimensions, and the conversion
matrices (between two schemes) of the four-quark oper-
ators, as follows:

βðgÞ ¼ −g3ðb0 þ b1g2 þ…Þ; ð26Þ

γ�ðgÞ ¼ −g2ðγ�0 þ γ�1 g
2 þ…Þ; ð27Þ

γ̃�ðgÞ ¼ −g2ðγ̃�0 þ γ̃�1 g
2 þ…Þ; ð28Þ

CS¼�1ðgÞ ¼ ð1þ c�1 g
2 þ…Þ; ð29Þ

C̃S¼�1ðgÞ ¼ ð1þ c̃�1 g
2 þ…Þ: ð30Þ

By considering Eqs. (23)–(30) in both MS and GIRS, one
can extract the following scheme-conversion formula of
NLO coefficients (g4) for the operator anomalous dimen-
sions [41]:

γ�;GIRS
1 ¼ γ�;MS

1 − 2b0c�1 þ ½γ�0 ; c�1 �; ð31Þ

γ̃�;GIRS
1 ¼ γ̃�;MS

1 − 2b0c̃�1 þ ½γ̃�0 ; c̃�1 �: ð32Þ

In the above relations, we set the GIRS coupling equal to the
MS coupling, at least up to the NLO, and thus, an additional
term containing the conversion factor of the coupling
constant is not present. Also, as is standard practice, we
relate the renormalization scales in the two schemes:
thus, we set the GIRS scales t, t0 proportional to 1=μ.

The coefficients b0, γ�0 , γ
�;MS
1 , γ̃�0 , γ̃

�;MS
1 are well known

in the literature (see, e.g., [41]1).

III. CALCULATION OF FEYNMAN
INTEGRALS FOR GREEN’S FUNCTIONS

IN COORDINATE SPACE

In this section, we briefly describe our methodology for
calculating the two- and three-point “GIRS” Green’s
functions defined in the previous section using dimensional
regularization.
There are two types of prototype scalar Feynman

integrals that enter the calculation of the two-point
functions G2pt

OΓΓ̃;OΓ 0 Γ̃ 0
ðzÞ to the tree level and one loop,

respectively,

ID1 ðξ1; α1Þ≡
Z

dDp1

ð2πÞD
eip1·ξ1

ðp2
1Þα1

; ð33Þ

ID2 ðξ1; α1; α2;α3; α4;α5Þ≡
Z

dDp1dDp2dDp3

ð2πÞ3D
eip3·ξ1

ðp2
1Þα1ðð−p1 þ p3Þ2Þα2ðð−p1 þ p2Þ2Þα3ðp2

2Þα4ðð−p2 þ p3Þ2Þα5
; ð34Þ

where D≡ 4 − 2ϵ is the number of spacetime dimensions
and the vector ξ1 satisfies ξ1 ≠ 0. In our calculation, ID2 is
only needed for integer values of the exponents αi. Tensor
integrals with an arbitrary number of momentum-loop
components p1μ, p2ν, p3ρ in the numerator can be reduced
to scalars through derivatives with respect to components of
ξ1 in the above scalar integrals or integration by parts [see
Eq. (45) in Ref. [55] ].
Integral ID1 is computed by introducing a Schwinger

parameter 1=ðp2
1Þα1 ¼ 1=Γðα1Þ

R∞
0 dλ λα1−1e−λp

2
1, leading

to the following resulting expression:

ID1 ðξ1; α1Þ ¼
Γð−α1 þD=2Þðξ21Þα1−D=2

4α1πD=2Γðα1Þ
: ð35Þ

Integral ID2 is calculated in two steps: First, the integra-
tion over p1 and p2 is performed, which is independent of
the phase factor of the numerator. This inner two-loop
integral is evaluated through the standard “diamond”-type
recursive formula of Ref. [56]. The resulting expression

1The convention used in this reference differs (compared to the
current work) by a factor of 2 for the operators Q5 and Q5.
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depends on the scalar quantity p2
3. Then, the remaining integral over p3 takes the form of ID1 .

The calculation of the three-point functions G3pt
OΓ0 ;OΓΓ̃;OΓ00

ðz; z0Þ involve the following prototype scalar Feynman integrals,

in addition to ID1 :

ID3 ðξ1; ξ2;α1; α2;α3Þ≡
Z

dDp1dDp2

ð2πÞ2D
eip1·ξ1eip2·ξ2

ðp2
1Þα1ðð−p1 þ p2Þ2Þα2ðp2

2Þα3
; ð36Þ

ID4 ðξ1; ξ2; α1; α2; α3; α4; α5Þ≡
Z

dDp1dDp2dDp3

ð2πÞ3D
eip2·ξ1eip3·ξ2

ðp2
1Þα1ðp2

2Þα2ðð−p1 þ p2Þ2Þα3ðp2
3Þα4ðð−p1 þ p3Þ2Þα5

; ð37Þ

where the vectors ξ1, ξ2 satisfy: ξ1 ≠ 0, ξ2 ≠ 0, and ðξ1 þ ξ2Þ ≠ 0. Integral ID4 takes only integer values of αi in the current
calculation. As in the case of the two-point functions, tensor integrals can be reduced to scalars through derivatives with
respect to components of ξ1, ξ2 of the scalar integrals, or integration by parts.
The two-loop integral ID3 can be reduced to one-loop integral JD by using Schwinger parametrization,

ID3 ðξ1; ξ2; α1; α2; α3Þ ¼
ΓðD=2 − sÞ

4sþD=2π3D=2ΓðsÞ ðξ
2
1Þs−α3ðξ22Þs−α1ððξ1 þ ξ2Þ2Þs−α2JDðξ1; ξ2; α1; α2;α3Þ; ð38Þ

where s≡ α1 þ α2 þ α3 −D=2, and

JDðξ1; ξ2; α1; α2; α3Þ≡
Z

dDx
1

ðð−xþ ξ1Þ2Þα1ðx2Þα2ððxþ ξ2Þ2Þα3
: ð39Þ

The “triangle” integral JD is well studied in Refs. [57,58]. By using the recursive relations of Ref. [57], the integrals of type
JD appearing in our calculation can be expressed in terms of the following master integrals, calculated in Ref. [58] up
to OðϵÞ:

J4−2ϵðξ1; ξ2; 1; 1; 1Þ ¼
π2−ϵΓð1þ ϵÞ

ðξ23Þ1þϵ

�
Φð1Þ

�
ξ21
ξ23

;
ξ22
ξ23

�
þ ϵΨð1Þ

�
ξ21
ξ23

;
ξ22
ξ23

�
þOðϵ2Þ

�
; ð40Þ

J4−2ϵðξ1; ξ2; 1; 1þ ϵ; 1Þ ¼ π2−ϵΓð1þ ϵÞ
ðξ23Þ1þ2ϵ

�
Φð1Þ

�
ξ21
ξ23

;
ξ22
ξ23

��
1 −

ϵ

2
ln

�
ξ21ξ

2
2

ξ23

��
þ ϵΨð1Þ

�
ξ21
ξ23

;
ξ22
ξ23

�
þOðϵ2Þ

�
; ð41Þ

J4−2ϵðξ1; ξ2; 1; ϵ; 1Þ ¼
π2−ϵΓð1þ ϵÞ
ðξ23Þ2ϵ2ð1 − 3ϵÞ

�
1

ϵ
− ϵ

�
π2

6
þ ln

�
ξ21
ξ23

�
ln

�
ξ22
ξ23

�
−
2ξ1 · ξ2

ξ23
Φð1Þ

�
ξ21
ξ23

;
ξ22
ξ23

��
þOðϵ2Þ

�
; ð42Þ

where ξ23 ≡ ðξ1 þ ξ2Þ2 andΦð1Þðξ21=ξ23; ξ22=ξ23Þ,Ψð1Þðξ21=ξ23Þ; ξ22=ξ23Þ are polylogarithmic functions given in [58]. Note that by
summing all Feynman diagrams, Φð1Þ and Ψð1Þ functions are canceled from the final expressions of the three-point Green’s
functions.
Integral ID4 is simplified by applying integration by parts with respect to p1, thus leading to the following recursive

relation, which can eliminate inverse powers of p2
1, or p

2
2, or p

2
3 [45]:

ID4 ðξ1; ξ2; α1; α2; α3; α4; α5Þ ¼
1

−2α1 − α3 − α5 þD

· ½α3ðID4 ðξ1; ξ2; α1 − 1; α2; α3 þ 1; α4; α5Þ − ID4 ðξ1; ξ2; α1; α2 − 1; α3 þ 1; α4; α5ÞÞ
þ α5ðID4 ðξ1; ξ2; α1 − 1; α2; α3; α4; α5 þ 1Þ − ID4 ðξ1; ξ2; α1; α2; α3; α4 − 1; α5 þ 1ÞÞ�: ð43Þ

In the case where α1, α2, α4 are positive integers, which is true in the computation at hand, an iterative implementation of
Eq. (43) leads to terms with one propagator less. One momentum can then be integrated using a well-known one-loop
formula [see Eqs. (A.1) and (A.2) in Ref. [56] ]; the remaining integrals are of type ID1 or ID3 .
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IV. RESULTS

In this section, we present perturbative results for the
two- and three-point Green’s functions, along with the
mixing matrices and conversion matrices between GIRS
and MS schemes, utilizing DR in D≡ 4 − 2ϵ dimensions.
Due to the very lengthy expressions of the renormalized
Green’s functions, we include a Mathematica input file in
Supplemental Material [47], named GIRS_Greens_
functions_4-quark.m, containing the full expres-
sions, while partial results are presented in the manuscript.
Also, since there are various options of conditions that
lead to unique solutions (within one-loop perturbation
theory), we have chosen to present one set, while further
options can be extracted from our results provided in
Supplemental Material [47].

A. Bare Green’s functions

We present our results for the bare tree-level two-point
Green’s function of two four-quark operators with arbi-

trary Dirac matrices (Γ; Γ̃;Γ0; eΓ0) and arbitrary flavors

(fi, f0i, i ¼ 1; 2; 3; 4) carried by the quark fields. The
result is given to all orders in ϵ, and it depends, explicitly,
on the D-vector z≡ y − x, which connects the positions of
the two operators,

hðψ̄f1ðxÞΓψf3ðxÞψ̄f2ðxÞΓ̃ψf4ðxÞÞðψ̄f0
1
ðyÞΓ0ψf0

3
ðyÞψ̄f0

2
ðyÞeΓ0ψf0

4
ðyÞÞitree

¼ Nc Γð2 − ϵÞ4
16 π8−4ϵðz2Þ8−4ϵ fδf1f03δf2f04 ½Ncδf3f01δf4f02 trðΓ=z Γ0=z ÞtrðΓ̃=z eΓ0=z Þ − δf3f02δf4f01 trðΓ=z eΓ0=z Γ̃=z Γ0=z Þ� þ δf1f04δf2f03

× ½Ncδf3f02δf4f01 trðΓ=z eΓ0=z ÞtrðΓ̃=z Γ0=z Þ − δf3f01δf4f02 trðΓ=z Γ0=z Γ̃=z eΓ0=z Þ�g; ð44Þ

where Nc is the number of colors and Γð2 − ϵÞ is Euler’s gamma function.
The tree-level three-point Green’s function of one four-quark and two quark bilinear operators for arbitrary Dirac

matrices and flavors is given below to all orders in ϵ and in terms of theD-vectors z≡ x − y and z0 ≡ y − w, which connect
the four-quark operator with the left and right bilinear operators, respectively,

hðψ̄f0
1
ðxÞΓ0ψf0

2
ðxÞÞðψ̄f1ðyÞΓψf3ðyÞψ̄f2ðyÞΓ̃ψf4ðyÞÞðψ̄f00

1
ðwÞΓ00ψf00

2
ðwÞÞitree

¼ Nc Γð2 − ϵÞ4
16 π8−4ϵðz2Þ4−2ϵðz02Þ4−2ϵ fδf3f01δf4f001 ½Ncδf1f02δf2f002 trðΓ0=z Γ=z ÞtrðΓ̃=z 0Γ00=z 0Þ − δf2f02δf1f002 trðΓ0=z Γ̃=z 0Γ00=z 0Γ=z Þ� þ δf4f01δf3f001

× ½Ncδf2f02δf1f002 trðΓ0=z Γ̃=z ÞtrðΓ=z 0Γ00=z 0 Þ − δf1f02δf2f002 trðΓ0=z Γ=z 0Γ00=z 0Γ̃=z Þ�g: ð45Þ

In order to extract the renormalization matrices to one-loop
order, we require only the above tree-level expressions up
to Oðϵ1Þ.
The corresponding one-loop expressions are more com-

plex and more lengthy, and thus, we do not (directly)
provide the explicit expressions in the manuscript. In
particular, the one-loop three-point functions are difficult
to express in a closed form without expanding over ϵ. For
the determination of the one-loop renormalization matrices,
we need only up toOðϵ0Þ contributions of the bare one-loop
Green’s functions. Divergent Oð1=ϵÞ terms can be read
from the one-loop coefficients of the MS renormalization
matrix (see Table II). Finite Oðϵ0Þ terms can be read from

the MS-renormalized Green’s functions [see Eqs. (52)–(55)
and Tables III–VI].

B. Mixing matrices in the MS scheme

An outcome of our calculation is the one-loop

coefficients of the mixing matrices ðZS¼�1ÞMS and

ðZS¼�1ÞMS in the MS scheme. By isolating the pole
terms (negative powers of ϵ in the Laurent series
expansion) in the bare two- and three-point Green’s
functions, we extract the mixing coefficients for the
parity-conserving operators by solving the following
system of conditions:

TABLE II. Numerical values of the coefficients z�ij, z̃
�
ij appear-

ing in the nonvanishing blocks of Eq. (48).

i j z�ij ¼ z̃�ij
1 1 −3ð1 ∓ NcÞ=Nc

2 2 3=Nc
2 3 �6
3 2 0
3 3 −6CF

4 4 −3ð2CF ∓ 1Þ
4 5 −ð2 ∓ NcÞ=ð2NcÞ
5 4 −6ð2� NcÞ=Nc
5 5 2CF � 3
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X5
k;l¼1

ðZS¼�1
ik ÞMSðZS¼�1

jl ÞMSG2pt
QS¼�1

k ;QS¼�1
l

ðzÞjϵ−n ¼0; n∈Zþ;

ð46Þ

ðZMS
OΓ

Þ2
X5
k¼1

ðZS¼�1
ik ÞMSG3pt

OΓ;QS¼�1
k ;OΓ

ðz;z0Þjϵ−n ¼ 0; n∈Zþ;

ð47Þ

where i, j run from 1 to 5 and i ≤ j. Similar conditions are
considered for the parity-violating operators, where the
two bilinear operators in the three-point function are
chosen to differ by γ5. As we mentioned in Sec. II C,
the bilinear operators must be chosen in such a way as to

give nonzero Green’s functions. Even though we can
construct multiple systems of conditions for different Γ
matrices, all must give the same unique solution. We have
confirmed that, indeed all Green’s functions calculated in
this work give a consistent solution, provided as follows:

ðZS¼�1
ij ÞMS ¼ δij þ

g2
MS

16π2ϵ
z�ij þOðg4

MS
Þ;

ðZS¼�1
ij ÞMS ¼ δij þ

g2
MS

16π2ϵ
z̃�ij þOðg4

MS
Þ; ð48Þ

where the nonzero coefficients z�ij; z̃
�
ij are given in

Table II [CF ¼ ðN2
c − 1Þ=ð2NcÞ].

TABLE III. Numerical values of the coefficients a�ij;0, a
�
ij;1, b

�
ij;0, b

�
ij;1, c

�
ij;0, c

�
ij;1 appearing in Eq. (52).

i j a�ij;0 a�ij;1 b�ij;0 b�ij;1 c�ij;0 c�ij;1
1 1 �7=32 7=32 �869=160 49=16 ∓21=8 0
1 2 0 0 ∓7=4 −7=4 0 0
1 3 0 0 �7=8 0 0 0
1 4 0 0 �7=8 0 0 0
1 5 0 0 �21=4 0 0 0
2 2 0 7=32 �7=4 49=16 0 0
2 3 ∓7=64 0 ∓391=320 0 ∓21=16 0
2 4 0 0 �7=4 0 0 0
2 5 0 0 0 0 0 0
3 3 0 7=128 �7=16 251=640 0 21=32
3 4 0 0 �7=16 −7=8 0 0
3 5 0 0 ∓21=8 0 0 0
4 4 ∓7=256 7=128 �87=1280 251=640 ∓63=64 21=32
4 5 �21=128 0 �1651=640 0 �21=32 0
5 5 �21=64 21=32 �3563=320 1709=160 ∓147=16 −21=8

TABLE IV. Numerical values of the coefficients ã�ij;0, ã
�
ij;1, b̃

�
ij;0, b̃

�
ij;1, c̃

�
ij;0, c̃

�
ij;1 appearing in Eq. (53).

i j ã�ij;0 ã�ij;1 b̃�ij;0 b̃�ij;1 c̃�ij;0 c̃�ij;1
1 1 �7=32 7=32 �869=160 49=16 ∓21=8 0
1 2 0 0 0 0 0 0
1 3 0 0 0 0 0 0
1 4 0 0 0 0 0 0
1 5 0 0 0 0 0 0
2 2 0 −7=32 0 −49=16 0 0
2 3 �7=64 0 �391=320 0 �21=16 0
2 4 0 0 0 0 0 0
2 5 0 0 0 0 0 0
3 3 0 −7=128 0 −251=640 0 −21=32
3 4 0 0 0 0 0 0
3 5 0 0 0 0 0 0
4 4 ∓7=256 7=128 �87=1280 251=640 ∓63=64 21=32
4 5 �21=128 0 �1651=640 0 �21=32 0
5 5 �21=64 21=32 �3563=320 1709=160 ∓147=16 −21=8
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We observe that the MS mixing matrices of parity-
conserving and parity-violating operators coincide for both
S ¼ þ1 and S ¼ −1, and they take the block-diagonal form
of ZS¼�1 in Eq. (8). Our results agree with previous
calculations in Refs. [23,41].
We note that in our calculation, we have employed the ‘t

Hooft-Veltman prescription [59] for defining γ5 in D
dimensions, which does not violate Ward identities involv-
ing pseudoscalar and axial-vector operators. Hence, the
following commutation/anticommutation relations of γ5 are
employed:

fγ5;γμg¼ 0; μ¼ 1;2;3;4; ½γ5;γμ� ¼ 0; μ> 4: ð49Þ

We also note that Lorentz indices appearing in the
definition of the four-quark operators and quark bilinear
operators are taken to lie in four instead ofD dimensions in

order to handle potential mixing with evanescent operators
in dimensional regularization; for studies of such operators,
see Refs. [23,30,46,60,61].

C. MS-renormalized Green’s functions

By removing the pole parts (1=ϵ) in the bare Green’s
function one defines the MS-renormalized Green’s func-
tions. As an example, we provide one two-point and one
three-point Green’s function renormalized in MS; they
depend on the scales z and/or z0 corresponding to the
separations between the operators that present in each
Green’s function, as well as on the MS renormalization
scale μ̄ appearing in the renormalization of the coupling
constant in D dimensions: gR ¼ μ−ϵZ−1

g gB [ gB (gR) is the

bare (renormalized) coupling constant, μ ¼ μ̄
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eγE=4π

p
].

The remaining Green’s functions can be found in
Supplemental Material [47].

TABLE V. Numerical values of the coefficients d�iΓ;l, e
�
iΓ;l, f

�
iΓ;l, appearing in Eq. (54).

i Γ d�iΓ;0 d�iΓ;1 e�iΓ;0 e�iΓ;1 f�iΓ;0 f�iΓ;1
1 S 0 0 �1=2 0 0 0
2 S ∓1=16 0 0 0 ∓3=4 0
3 S 0 1=32 �1=4 −1=16 0 3=8
4 S ∓1=64 1=32 ∓3=8ð1=8 − lnð2ÞÞ −1=16 ∓3=8 3=8
5 S �3=32 0 ∓3=4ð1=8 − lnð2ÞÞ 0 �3=4 0
1 P 0 0 0 0 0 0
2 P �1=16 0 �2 0 �3=4 0
3 P 0 −1=32 0 −15=16 0 −3=8
4 P ∓1=64 1=32 ∓3=8ð35=24 − lnð2ÞÞ 15=16 ∓3=8 3=8
5 P �3=32 0 �3=4ð93=24þ lnð2ÞÞ 0 �3=4 0
1 Vj �1=72 1=72 �1=6ð41=48þ lnð2ÞÞ 1=12 ∓1=12 0
2 Vj 0 1=72 0 1=12 0 0
3 Vj ∓1=144 0 ∓1=12ð23=48 − lnð2ÞÞ 0 ∓1=24 0
4 Vj 0 0 �1=12 0 0 0
5 Vj 0 0 �1=6 0 0 0
1 Aj �1=72 1=72 �1=6ð35=16þ lnð2ÞÞ 11=36 ∓1=12 0
2 Aj 0 −1=72 ∓1=9 −11=36 0 0
3 Aj �1=144 0 �1=12ð29=16 − lnð2ÞÞ 0 �1=24 0
4 Aj 0 0 ∓1=36 0 0 0
5 Aj 0 0 �1=6 0 0 0
1 Tjk 0 0 �1=36 0 0 0
2 Tjk 0 0 �11=192 0 0 0
3 Tjk 0 0 ∓1=72 0 0 0
4 Tjk �1=576 0 �1=72ð15=8 − lnð2ÞÞ 0 0 0
5 Tjk �1=288 1=144 �1=12ð89=72þ lnð2ÞÞ 25=216 ∓1=18 −1=36
1 Tj4 0 0 �1=36 0 0 0
2 Tj4 0 0 ∓11=192 0 0 0
3 Tj4 0 0 ∓1=72 0 0 0
4 Tj4 �1=576 0 �1=72ð15=8 − lnð2ÞÞ 0 0 0
5 Tj4 �1=288 1=144 �1=12ð89=72þ lnð2ÞÞ 25=216 ∓1=18 −1=36
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½G2pt
QS¼�1

1
;QS¼�1

1

ðzÞ�MS ¼ 4Nc

π8ðz2Þ6 ðδf1f04δf2f03 � δf1f03δf2f04Þðδf3f02δf4f01 � δf3f01δf4f02Þ

×

�
�1þ Nc þ 2

g2
MS

CF

16π2
½�6þ 7Nc ∓ 6ðlnðμ̄2z2Þ þ 2γE − 2 lnð2ÞÞ� þOðg4

MS
Þ
�
; ð50Þ

½G3pt
Vμ;QS¼�1

1
;Vμ

ðz; z0Þ�MS ¼ Nc

π8ðz2Þ3ðz02Þ3 ðδf01f4δf001f3 � δf0
1
f3δf001f4Þðδf02f2δf002f1 � δf0

2
f1δf002f2Þ

×

�
Nc � 1

2

�
1 − 2

zμ
z2

− 2
z0μ
z02

þ 4
ðz · z0Þzμz0μ

z2z02

�
�
g2
MS

CF

16π2

�
1 − 2

ðzμ þ z0μÞ2
ðzþ z0Þ2

�
�
g2
MS

CF

16π2

�
1 − 2

zμ
z2

− 2
z0μ
z02

þ 4
ðz · z0Þzμz0μ

z2z02

�
×

�
2 − 3

�
ln

�
μ̄2z2z02

ðzþ z0Þ2
�
þ 2γE − 2 lnð2Þ ∓ Nc

��
þOðg4

MS
Þ
�
; ð51Þ

where the flavor indices follow the conventions of Eqs. (44) and (45).
We also provide the MS-renormalized two- and three-point Green’s functions after integration over time slices [see

Eqs. (13) and (14)],2 which are relevant for the extraction of the conversion matrices. These are written in a compact form
for all four-quark and quark bilinear operators, as follows:

½G̃2pt
QS¼�1

i ;QS¼�1
j

ðtÞ�MS ¼ Nc

π6jtj9 ðδf1f04δf2f03 � δf1f03δf2f04Þðδf3f02δf4f01 � δf3f01δf4f02Þ
�
ða�ij;0 þ a�ij;1NcÞ

þ
g2
MS

CF

16π2
½ðb�ij;0 þ b�ij;1NcÞ þ ðlnðμ̄2t2Þ þ 2γEÞðc�ij;0 þ c�ij;1NcÞ� þOðg4

MS
Þ
�
; ð52Þ

TABLE VI. Numerical values of the coefficients d̃�iΓ;l, ẽ�iΓ;l, f̃
�
iΓ;l appearing in Eq. (55).

i Γ d̃�iΓ;0 d̃�iΓ;1 ẽ�iΓ;0 ẽ�iΓ;1 f̃�iΓ;0 f̃�iΓ;1

1 S 0 0 0 0 0 0
2 S �1=16 0 �1 0 �3=4 0
3 S 0 −1=32 0 −7=16 0 −3=8
4 S �1=64 −1=32 �3=8ð19=24 − lnð2ÞÞ −7=16 �3=8 −3=8
5 S ∓3=32 0 ∓3=4ð15=8þ lnð2ÞÞ 0 ∓3=4 0
1 Vj �1=72 1=72 �1=6ð73=48þ lnð2ÞÞ 7=36 ∓1=12 0
2 Vj 0 −1=72 0 −7=36 0 0
3 Vj �1=144 0 �1=12ð55=48 − lnð2ÞÞ 0 �1=24 0
4 Vj 0 0 0 0 0 0
5 Vj 0 0 0 0 0 0
1 Tjk 0 0 0 0 0 0
2 Tjk 0 0 ∓11=192 0 0 0
3 Tjk 0 0 0 0 0 0
4 Tjk ∓1=576 0 ∓1=72ð15=8 − lnð2ÞÞ 0 0 0
5 Tjk ∓1=288 −1=144 ∓1=12ð89=72þ lnð2ÞÞ −25=216 �1=18 1=36
1 Tj4 0 0 0 0 0 0
2 Tj4 0 0 �11=192 0 0 0
3 Tj4 0 0 0 0 0 0
4 Tj4 ∓1=576 0 ∓1=72ð15=8 − lnð2ÞÞ 0 0 0
5 Tj4 ∓1=288 −1=144 ∓1=12ð89=72þ lnð2ÞÞ −25=216 �1=18 1=36

2Explicit formulas for integration over time slices can be found in our Ref. [45].

GAUGE-INVARIANT RENORMALIZATION OF FOUR-QUARK … PHYS. REV. D 110, 074506 (2024)

074506-13



½G̃2pt
QS¼�1

i ;QS¼�1
j

ðtÞ�MS ¼ Nc

π6jtj9 ðδf1f04δf2f03 � δf1f03δf2f04Þðδf3f02δf4f01 � ð−1Þδi2þδi3δf3f01δf4f02Þ
�
ðã�ij;0 þ ã�ij;1NcÞ

þ
g2
MS

CF

16π2
½ðb̃�ij;0 þ b̃�ij;1NcÞ þ ðlnðμ̄2t2Þ þ 2γEÞðc̃�ij;0 þ c̃�ij;1NcÞ� þOðg4

MS
Þ
�
; ð53Þ

½G̃3pt
OΓ;QS¼�1

i ;OΓ
ðt; tÞ�MS ¼ Nc

π4t6
ðδf0

1
f4δf001f3 � δf0

1
f3δf001f4Þðδf02f2δf002f1 � δf0

2
f1δf002f2Þ

�
ðd�iΓ;0 þ d�iΓ;1NcÞ

þ
g2
MS

CF

16π2
½ðe�iΓ;0 þ e�iΓ;1NcÞ þ ðlnðμ̄2t2Þ þ 2γEÞðf�iΓ;0 þ f�iΓ;1NcÞ� þOðg4

MS
Þ
�
; ð54Þ

½G̃3pt
OΓ;QS¼�1

i ;OΓγ5
ðt; tÞ�MS ¼ Nc

π4t6
ðδf0

1
f4δf001f3 � δf0

1
f3δf001f4Þðδf02f2δf002f1 � ð−1Þδi2þδi3δf0

2
f1δf002f2Þ

�
ðd̃�iΓ;0 þ d̃�iΓ;1NcÞ

þ
g2
MS

CF

16π2
½ðẽ�iΓ;0 þ ẽ�iΓ;1NcÞ þ ðlnðμ̄2t2Þ þ 2γEÞðf̃�iΓ;0 þ f̃�iΓ;1NcÞ� þOðg4

MS
Þ
�
; ð55Þ

where the coefficients a�ij;k, b
�
ij;k, c

�
ij;k, ã

�
ij;k, b̃

�
ij;k, c̃

�
ij;k, d

�
iΓ;k,

e�iΓ;k, f
�
iΓ;k, d̃

�
iΓ;k, ẽ

�
iΓ;k, f̃

�
iΓ;k are given in Tables III–VI. Note

that the three-point functions, which include temporal
components of vector (V4) and/or axial-vector (A4) oper-
ators, vanish (under integration over time slices), and thus,
they are omitted from Tables V and VI.
For simplicity, we have presented algebraic results for

the three-point functions at t ¼ t0. In Fig. 3, we examine the
dependence of the three-point functions on more general
relative values of t and t0. As an example, we provide plots
for the MS-renormalized three-point functions of the
parity-conserving operators for S ¼ þ1 as a function of
t=ðtþ t0Þ, keeping tþ t0 constant. All other three-point
functions (of parity-conserving operators with S ¼ −1 or
parity-violating operators with S ¼ �1) have similar
behavior. We have employed certain values of the free
parameters used in lattice simulations: Nc ¼ 3, g2

MS
¼ 6=β,

β ¼ 1.788, μ̄ ¼ 2 GeV, ðtþ t0Þ ¼ T=2 (T is the temporal
lattice size), T ¼ 64a (a is the lattice spacing),
and a ¼ 0.07957 fm.
We observe in Fig. 3 that the three-point functions are

symmetric over t=ðtþ t0Þ ¼ 0.5 (or, equivalently, t ¼ t0),
as expected. Also, they have a divergent behavior when
t=ðtþ t0Þ tends to 0 or 1 because they approach contact
points. Even though the MS-renormalized Green’s func-
tions have a strong dependence on t and t0, the renorm-
alization functions in the MS scheme must be t, t0

independent; this is a powerful cross-check that can be
examined in the nonperturbative investigations on the
lattice, given that appropriate conversion functions are
employed.
Some further observations are the following: Green’s

functions with Qi≠1 take larger absolute values when scalar
(S) or pseudoscalar (P) operators are considered, while for
Q1, the three-point functions with vector (Vi) or axial-
vector (Ai) operators (where i is a spatial direction) give the
highest values. Green’s functions with tensor (Tij) oper-
ators have much smaller values compared to all other three-
point functions. Our findings on the magnitude and size of
the one-loop three-point functions for each Γ can give an
input to the corresponding nonperturbative calculations:
We expect that larger contributions in the perturbative
calculations will give a better signal in lattice simulations.
However, some of the large contributions observed in the
perturbative calculations are a consequence of mixing; thus,
it is not obvious that a reliable set of renormalization
conditions can be extracted by using as criterion the size of
the Green’s functions.

D. Conversion matrices

The one-loop conversion matrices between different
variants of GIRS and the MS scheme are extracted from
our results by rewriting the GIRS conditions [Eqs. (15)–
(21)] in terms of the conversion matrices, as defined in
Eq. (22),

½G̃2pt
QS¼�1

i ;QS¼�1
j

ðtÞ�MS ¼
X5
k;l¼1

ðCS�1
ik ÞMS;GIRSðCS�1

jl ÞMS;GIRS½G̃2pt
QS¼�1

k ;QS¼�1
l

ðtÞ�tree; ð56Þ

½G̃3pt
OΓ;QS¼�1

i ;OΓ
ðt; tÞ�MS ¼ ðCMS;GIRS

OΓ
Þ2
X5
k¼1

ðCS�1
ik ÞMS;GIRS½G̃3pt

OΓ;QS¼�1
k ;OΓ

ðt; tÞ�tree; ð57Þ
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FIG. 3. Plots of three-point functions ½G̃3pt
OΓ;Q

S¼þ1
i ;OΓ

ðt; t0Þ�MS, i∈ ½1; 5�, as a function of t=ðtþ t0Þ, for fixed tþ t0. A common factor

of Nc=ðπ8ðtþ t0Þ6Þ × ðδf0
1
f4δf001f3 þ δf0

1
f3δf001f4Þðδf02f2δf002f1 þ δf0

2
f1δf002f2Þ is excluded from all graphs. Here, we set Nc ¼ 3, g2

MS
¼ 6=β,

β ¼ 1.788, μ̄ ¼ 2 GeV, ðtþ t0Þ ¼ T=2, T ¼ 64a, a ¼ 0.07957 fm.
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½G̃2pt
QS¼�1

i ;QS¼�1
j

ðtÞ�MS ¼
X5
k;l¼1

ðC̃S�1
ik ÞMS;GIRSðC̃S�1

jl ÞMS;GIRS½G̃2pt
QS¼�1

k ;QS¼�1
l

ðtÞ�tree; ð58Þ

½G̃3pt
OΓ;QS¼�1

i ;OΓγ5
ðt; tÞ�MS ¼ ðCMS;GIRS

OΓ
ÞðCMS;GIRS

OΓγ5
Þ
X5
k¼1

ðC̃S�1
ik ÞMS;GIRS½G̃3pt

OΓ;QS¼�1
k ;OΓγ5

ðt; tÞ�tree; ð59Þ

where CMS;GIRS
OΓ

is the conversion factor of the quark
bilinear operator OΓ calculated to one loop in Ref. [45],

CMS;GIRS
S ¼ 1þ

g2
MS

CF

16π2

�
−
1

2
þ3 lnðμ̄2t2Þþ6γE

�
þOðg4

MS
Þ;

ð60Þ

CMS;GIRS
P ¼ 1þ

g2
MS

CF

16π2

�
15

2
þ3 lnðμ̄2t2Þþ6γE

�
þOðg4

MS
Þ;

ð61Þ

CMS;GIRS
V ¼ 1þ

g2
MS

CF

16π2
3

2
þOðg4

MS
Þ; ð62Þ

CMS;GIRS
A ¼ 1þ

g2
MS

CF

16π2
11

2
þOðg4

MS
Þ; ð63Þ

CMS;GIRS
T ¼ 1þ

g2
MS

CF

16π2

�
25

6
− lnðμ̄2t2Þ− 2γE

�
þOðg4

MS
Þ:

ð64Þ

Note that the conversion matrix ðC̃S�1ÞMS;GIRS has the
block-diagonal form of ZS¼�1 [see Eq. (8)]. As we
discussed in Sec. II C, there are a lot of different choices
of three-point Green’s functions that can be included in the
renormalization conditions, giving a different version of
GIRS. In particular, for the parity-conserving operators

(QS¼�1
i ), where 15 conditions are obtained from the two-

point functions, there are 30!=ð10!20!Þ ¼ 30; 045; 015
choices for obtaining the remaining 10 conditions from
the three-point functions (see Table V). However, some
choices include linearly dependent or incompatible con-
ditions leading to infinite or no solutions, respectively. By
examining all cases in one-loop perturbation theory, we
conclude that there are 205,088 choices of conditions,
which give a unique solution.
Even though all solvable systems of conditions are

acceptable, it is natural to set a criterion in order to select
options which have better behavior compared to others.
Such a criterion can be the size of the mixing contributions.
To this end, we evaluate the sum of squares of the off-
diagonal coefficients in the conversion matrices for all the
accepted cases, and we choose the cases with the smallest
values. We found that, in general, the sums of squares
among different choices are comparable. We also observed
that the mixing is less pronounced for the operators with
S ¼ −1, as compared to S ¼ þ1.
From the options that give the smallest sum of squares of

the off-diagonal coefficients (smallest mixing contribu-
tions), we choose one to present below. We avoid including
tensor operators in the selected set of conditions, which are
typically more noisy in simulations. Also, we prefer to have
more scalar or pseudoscalar operators which are computa-
tionally cheaper compared to other bilinear operators. The
selected set of conditions includes the following ten
renormalized three-point functions:

G̃3pt
S;QS¼�1

1
;S
ðt; tÞ; G̃3pt

P;QS¼�1
1

;P
ðt; tÞ; G̃3pt

Vi;QS¼�1
1

;Vi
ðt; tÞ; G̃3pt

S;QS¼�1
2

;S
ðt; tÞ; G̃3pt

P;QS¼�1
2

;P
ðt; tÞ;

G̃3pt
S;QS¼�1

3
;S
ðt; tÞ; G̃3pt

S;QS¼�1
5

;S
ðt; tÞ; G̃3pt

P;QS¼�1
5

;P
ðt; tÞ; G̃3pt

Vi;QS¼�1
5

;Vi
ðt; tÞ; G̃3pt

Ai;QS¼�1
5

;Ai
ðt; tÞ;

and the solution reads

ðCS�1
ij ÞMS;GIRS ¼ δij þ

g2
MS

16π2
Xþ1

k¼−1

h
g�ij;k þ ðlnðμ̄2t2Þ þ 2γEÞh�ij;k

i
Nk

c þOðg4
MS

Þ; ð65Þ

where the coefficients g�ij;k, h
�
ij;k are given in Table VII.

In the case of parity-violating operators, the number of
possible sets of conditions is much smaller since the 5 × 5
mixing matrices are decomposed into three blocks of 1 × 1
and two 2 × 2 submatrices, as explained in Sec. II. For the

1 × 1 block, we consider the condition with the corre-
sponding two-point function, and thus, there is no need to
involve any three-point functions. For the 2 × 2 blocks,
there are eight choices (for each block) for obtaining one
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condition from the three-point functions (see Table VI), in
addition to the three conditions obtained from the two-point
functions. However, only two (three) options for the block
that involves fQ2;Q3g (fQ4;Q5g) give a unique solution.
By applying the same criterion, as in the parity-conserving
operators, for restricting the number of possible sets of
conditions, we conclude that the block of fQ2;Q3g has
smaller mixing contributions compared to the block of
fQ4;Q5g for the parity-violating operators with S ¼ þ1,
and vice versa for the operators with S ¼ −1.
The option that gives the smallest sum of squares of the

off-diagonal coefficients include the following renormal-
ized three-point functions:

G̃3pt
S;QS¼�1

2
;P
ðt; tÞ; G̃3pt

S;QS¼�1
5

;P
ðt; tÞ;

and the solution reads

ðC̃S�1
ij ÞMS;GIRS ¼ δij þ

g2
MS

16π2
Xþ1

k¼−1

h
g̃�ij;k

þ ðlnðμ̄2t2Þ þ 2γEÞh̃�ij;k
i
Nk

c þOðg4
MS

Þ;
ð66Þ

where the coefficients g̃�ij;k, h̃
�
ij;k, are given in Table VIII.

Other accepted options include the renormalized three-
point functions of

G̃3pt
Vi;QS¼�1

3
;Ai
ðt; tÞ and G̃3pt

Tij;QS¼�1
4

;T 0
ij
ðt; tÞ

ðor G̃3pt
Ti4;QS¼�1

4
;T 0

i4
ðt; tÞÞ:

E. Anomalous dimensions

The NLO (g4) anomalous dimensions of the four-quark
operators in the GIRS scheme can be extracted from the
combination of our NLO (g2) results for the conversion
matrix between GIRS and MS, with the NLO (g4) anoma-
lous dimensions in the MS scheme, as dictated in Eqs. (31)
and (32). For the selected GIRS version (given in the
previous subsection), the NLO anomalous dimensions read

ðγ�;GIRS
1 Þij ¼

1

ð16π2Þ2
Xþ2

k¼−2

X1
l¼0

h
p�ij;kl

þ ðlnðc2Þ þ 2γEÞq�ij;kl
i
Nk

cNl
f; ð67Þ

ðγ̃�;GIRS
1 Þij ¼

1

ð16π2Þ2
Xþ2

k¼−2

X1
l¼0

h
p̃�ij;kl

þ ðlnðc2Þ þ 2γEÞq̃�ij;kl
i
Nk

cNl
f; ð68Þ

where we set μ̄t≡ c (¼ constant), and the coefficients
p�
ij;kl, q

�
ij;kl, p̃

�
ij;kl, q̃

�
ij;kl are given in Tables IX–XIII.

TABLE VII. Numerical values of the coefficients g�ij;k, h
�
ij;k appearing in Eq. (65).

i j g�ij;−1 g�ij;0 g�ij;þ1 h�ij;−1 h�ij;0 h�ij;þ1

1 1 −869=140 �379=140 7=2 3 ∓3 0
1 2 2 ∓ð723=280 − 6 lnð2ÞÞ −2 0 0 0
1 3 −723=140þ 12 lnð2Þ 0 0 0 0 0
1 4 −4 �4 0 0 0 0
1 5 −2 �2 0 0 0 0
2 1 397=280þ 6 lnð2Þ �ð163=280 − 6 lnð2ÞÞ −2 0 0 0
2 2 −9=2 �2 7=2 −3 0 0
2 3 4 ∓2 0 0 ∓6 0
2 4 4 �8 0 0 0 0
2 5 −2 0 0 0 0 0
3 1 −1 �1 0 0 0 0
3 2 1 �99=280 0 0 0 0
3 3 −38=35 �2 251=140 −3 0 3
3 4 4 �239=280 −321=140 0 0 0
3 5 0 ∓239=560 0 0 0 0
4 1 −1 �1 0 0 0 0
4 2 1 ∓239=280 0 0 0 0
4 3 4 �2 −799=140 0 0 0
4 4 −307=112þ 3 lnð2Þ �169=140 251=140 −3 ∓3 3
4 5 −269=480þ 1=2 lnð2Þ �ð869=1680 − lnð2ÞÞ 0 1 ∓1=2 0
5 1 −6 �6 0 0 0 0
5 2 −6 0 0 0 0 0
5 3 0 ∓12 0 0 0 0
5 4 −269=40þ 6 lnð2Þ ∓ð29=140 − 12 lnð2ÞÞ 0 12 �6 0
5 5 −1229=240 − 3 lnð2Þ �309=140 1709=420 1 ∓3 −1
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TABLE VIII. Numerical values of the coefficients g̃�ij;k, h̃
�
ij;k appearing in Eq. (66).

i j g̃�ij;−1 g̃�ij;0 g̃�ij;þ1 h̃�ij;−1 h̃�ij;0 h̃�ij;þ1

1 1 −869=140 �379=140 7=2 3 ∓3 0
1 2 0 0 0 0 0 0
1 3 0 0 0 0 0 0
1 4 0 0 0 0 0 0
1 5 0 0 0 0 0 0
2 1 0 0 0 0 0 0
2 2 −9=2 0 7=2 −3 0 0
2 3 0 ∓2 0 0 ∓6 0
2 4 0 0 0 0 0 0
2 5 0 0 0 0 0 0
3 1 0 0 0 0 0 0
3 2 0 �99=280 0 0 0 0
3 3 −38=35 0 251=140 −3 0 3
3 4 0 0 0 0 0 0
3 5 0 0 0 0 0 0
4 1 0 0 0 0 0 0
4 2 0 0 0 0 0 0
4 3 0 0 0 0 0 0
4 4 −307=112þ 3 lnð2Þ �169=140 251=140 −3 ∓3 3
4 5 −269=480þ 1=2 lnð2Þ �ð869=1680 − lnð2ÞÞ 0 1 ∓1=2 0
5 1 0 0 0 0 0 0
5 2 0 0 0 0 0 0
5 3 0 0 0 0 0 0
5 4 −269=40þ 6 lnð2Þ ∓ð29=140 − 12 lnð2ÞÞ 0 12 �6 0
5 5 −1229=240 − 3 lnð2Þ �309=140 1709=420 1 ∓3 −1

TABLE IX. Numerical values of the coefficients p�
ij;k0 appearing in Eq. (67).

i j p�ij;−20 p�ij;−10 p�ij;00 p�ij;þ10 p�ij;þ20

1 1 0 0 9559=210 ∓4169=210 −77=3
1 2 −24 �ð3009=70 − 72 lnð2ÞÞ −2587=420þ 36 lnð2Þ �ð971=140 − 44 lnð2ÞÞ 44=3
1 3 2169=35 − 144 lnð2Þ ∓ð3849=70 − 72 lnð2ÞÞ 2651=70 − 88 lnð2Þ �24 0
1 4 0 ∓24 88=3 ∓16=3 0
1 5 0 �4 44=3 ∓56=3 0
2 1 1191=70þ 72 lnð2Þ ∓ð1893=140þ 108 lnð2ÞÞ −5437=210 − 8 lnð2Þ �ð3247=420þ 44 lnð2ÞÞ 44=3
2 2 15=2 �12 6308=105 ∓44=3 −77=3
2 3 0 �1224=35 −16=3 �5129=105 0
2 4 −48 0 −9049=210 ∓40009=105 0
2 5 −8 �24 2329=420 0 0
3 1 −12 �18 22=3 ∓40=3 0
3 2 0 �9 −40=3 �365=28 0
3 3 15=2 ∓12 8773=105 ∓44=3 −4933=105
3 4 0 ∓2397=70 −8311=210 �3149=420 1177=70
3 5 8 ∓799=140 −403=140 �7423=840 0
4 1 0 ∓6 58=3 ∓40=3 0
4 2 12 0 −7751=420 �239=21 0
4 3 0 �36 −4009=210 ∓10271=210 8789=210
4 4 −107=2 ∓ð1767=140þ 36 lnð2ÞÞ 12001=168 − 22 lnð2Þ �1877=70 −4933=105
4 5 −811=105þ 16 lnð2Þ �ð2131=120 − 14 lnð2ÞÞ −207=112 − 23=3 lnð2Þ ∓ð1599=280 − 46=3 lnð2ÞÞ 0
5 1 0 �12 20 ∓32 0
5 2 24 ∓963=35 2957=70 0 0
5 3 −96 �72 1434=35 �2117=35 0
5 4 −5716=35 − 192 lnð2Þ ∓ð1069=10þ 168 lnð2ÞÞ −23179=420þ 4 lnð2Þ ∓ð7033=210 − 8 lnð2ÞÞ 0
5 5 21=2 �ð6247=140þ 36 lnð2ÞÞ 3839=360þ 22 lnð2Þ �337=70 −3397=315

M. CONSTANTINOU et al. PHYS. REV. D 110, 074506 (2024)

074506-18



TABLE X. Numerical values of the coefficients p�
ij;k1 appearing in Eq. (67).

i j p�ij;−21 p�ij;−11 p�ij;01 p�ij;þ11 p�ij;þ21

1 1 0 −869=105 �379=105 14=3 0
1 2 0 8=3 ∓ð241=70 − 8 lnð2ÞÞ −8=3 0
1 3 0 −241=35þ 16 lnð2Þ 0 0 0
1 4 0 −16=3 �16=3 0 0
1 5 0 −8=3 �8=3 0 0
2 1 0 397=210þ 8 lnð2Þ �ð163=210 − 8 lnð2ÞÞ −8=3 0
2 2 0 −40=3 �8=3 14=3 0
2 3 0 16=3 ∓52=3 0 0
2 4 0 16=3 �32=3 0 0
2 5 0 −8=3 0 0 0
3 1 0 −4=3 �4=3 0 0
3 2 0 4=3 ∓107=70 0 0
3 3 0 −922=105 �8=3 601=105 0
3 4 0 16=3 �239=210 −107=35 0
3 5 0 0 ∓239=420 0 0
4 1 0 −4=3 �4=3 0 0
4 2 0 4=3 ∓239=210 0 0
4 3 0 16=3 �8=3 −799=105 0
4 4 0 −587=84þ 4 lnð2Þ �33=35 601=105 0
4 5 0 −21=40þ 2=3 lnð2Þ �ð81=140 − 4=3 lnð2ÞÞ 0 0
5 1 0 −8 �8 0 0
5 2 0 −8 0 0 0
5 3 0 0 ∓16 0 0
5 4 0 611=30þ 8 lnð2Þ �ð2351=105þ 16 lnð2ÞÞ 0 0
5 5 0 −1189=180 − 4 lnð2Þ ∓107=35 799=315 0

TABLE XI. Numerical values of the coefficients p̃�
ij;k0 appearing in Eq. (68).

i j p̃�ij;−20 p̃�ij;−10 p̃�ij;00 p̃�ij;þ10 p̃�ij;þ20

1 1 0 0 9559=210 ∓4169=210 −77=3
1 2 0 0 0 0 0
1 3 0 0 0 0 0
1 4 0 0 0 0 0
1 5 0 0 0 0 0
2 1 0 0 0 0 0
2 2 15=2 0 6308=105 0 −77=3
2 3 0 �1224=35 0 �5129=105 0
2 4 0 0 0 0 0
2 5 0 0 0 0 0
3 1 0 0 0 0 0
3 2 0 �9 0 �365=28 0
3 3 15=2 0 8773=105 0 −4933=105
3 4 0 0 0 0 0
3 5 0 0 0 0 0
4 1 0 0 0 0 0
4 2 0 0 0 0 0
4 3 0 0 0 0 0
4 4 −107=2 ∓ð1767=140þ 36 lnð2ÞÞ 12001=168 − 22 lnð2Þ �1877=70 −4933=105
4 5 −811=105þ 16 lnð2Þ �ð2131=120 − 14 lnð2ÞÞ −207=112 − 23=3 lnð2Þ ∓ð1599=280 − 46=3 lnð2ÞÞ 0
5 1 0 0 0 0 0
5 2 0 0 0 0 0
5 3 0 0 0 0 0
5 4 −5716=35 − 192 lnð2Þ ∓ð1069=10þ 168 lnð2ÞÞ −23179=420þ 4 lnð2Þ ∓ð7033=210 − 8 lnð2ÞÞ 0
5 5 21=2 �ð6247=140þ 36 lnð2ÞÞ 3839=360þ 22 lnð2Þ �337=70 −3397=315
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TABLE XII. Numerical values of the coefficients p̃�
ij;k1 appearing in Eq. (68).

i j p̃�ij;−21 p̃�ij;−11 p̃�ij;01 p̃�ij;þ11 p̃�ij;þ21

1 1 0 −869=105 �379=105 14=3 0
1 2 0 0 0 0 0
1 3 0 0 0 0 0
1 4 0 0 0 0 0
1 5 0 0 0 0 0
2 1 0 0 0 0 0
2 2 0 −40=3 0 14=3 0
2 3 0 0 ∓52=3 0 0
2 4 0 0 0 0 0
2 5 0 0 0 0 0
3 1 0 0 0 0 0
3 2 0 0 ∓107=70 0 0
3 3 0 −922=105 0 601=105 0
3 4 0 0 0 0 0
3 5 0 0 0 0 0
4 1 0 0 0 0 0
4 2 0 0 0 0 0
4 3 0 0 0 0 0
4 4 0 −587=84þ 4 lnð2Þ �33=35 601=105 0
4 5 0 −21=40þ 2=3 lnð2Þ �ð81=140 − 4=3 lnð2ÞÞ 0 0
5 1 0 0 0 0 0
5 2 0 0 0 0 0
5 3 0 0 0 0 0
5 4 0 611=30þ 8 lnð2ÞÞ �ð2351=105þ 16 lnð2ÞÞ 0 0
5 5 0 −1189=180 − 4 lnð2Þ ∓107=35 799=315 0

TABLE XIII. Numerical values of the coefficients q�ij;kl ¼ q̃�ij;kl appearing in Eqs. (67) and (68). The coefficients
q�ij;−20, q̃

�
ij;−20, q

�
ij;−10, q̃

�
ij;−10, q

�
ij;−21, q̃

�
ij;−21, q

�
ij;þ21, q̃

�
ij;þ21 are all zero.

i j
q�ij;−11 ¼ q̃�ij;−11 ¼ ð−11=2Þq�ij;00

¼ ð−11=2Þq̃�ij;00
q�ij;01 ¼ q̃�ij;01 ¼ ð−11=2Þq�ij;þ10

¼ ð−11=2Þq̃�ij;þ10

q�ij;þ11 ¼ q̃�ij;þ11 ¼ ð−11=2Þq�ij;þ20

¼ ð−11=2Þq̃�ij;þ20

1 1 4 ∓4 0
1 2 0 0 0
1 3 0 0 0
1 4 0 0 0
1 5 0 0 0
2 1 0 0 0
2 2 −4 0 0
2 3 0 ∓8 0
2 4 0 0 0
2 5 0 0 0
3 1 0 0 0
3 2 0 0 0
3 3 −4 0 4
3 4 0 0 0
3 5 0 0 0
4 1 0 0 0
4 2 0 0 0
4 3 0 0 0
4 4 −4 ∓4 4
4 5 4=3 ∓2=3 0
5 1 0 0 0
5 2 0 0 0
5 3 0 0 0
5 4 16 �8 0
5 5 4=3 ∓ 4 −4=3
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V. CONCLUSIONS AND FUTURE PLANS

In this work, we present a comprehensive study of
the renormalization of four-quark operators involved in
ΔF ¼ 2 processes by using a gauge-invariant renormaliza-
tion scheme (GIRS). The analysis is based on a one-loop
perturbative calculation of two-point Green’s functions
involving products of two four-quark operators, as well as
three-point Green’s functions with one four-quark and two
bilinear operators. The computations are performed in
dimensional regularization. Operator mixing between
four-quark operators, which share the same symmetry
properties, was addressed through a set of renormalization
conditions involving the Green’s functions under study. We
found a variety of acceptable renormalization prescriptions
within GIRS, which are applicable in both perturbative and
nonperturbative data. We present a specific choice of them in
the manuscript, which can lead to smaller mixing contri-
butions; all other choices can be directly inferred from the
results for the Green’s functions, provided in Supplemental
Material [47]. This calculation enables us to derive the one-
loop conversion matrices connecting GIRS results to their
MS counterparts. Our results can be employed in non-
perturbative investigations on the lattice. For this purpose,
integrations over time slices have been performed in the
Green’s functions of the proposed GIRS scheme, and the
effect on the corresponding conversion factors has been
calculated; this procedure is expected to reduce statistical
noise in the nonperturbative evaluation of the relevant
Green’s functions, summed over time slices. Thus, this

study not only advances the theoretical framework for the
renormalization procedure of four-quark operators but also
offers a practical tool for improving the reliability of physical
quantities calculated in lattice QCD.
A natural extension of this work will involve the

investigation of four-quark operators with ΔF ¼ 1 and
ΔF ¼ 0. This investigation also encompasses the mixing
with lower-dimensional operators, including local and
extended quark bilinear operators, the chromomagnetic
operator, and the energy-momentum tensor.
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