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In this work we calculate the renormalization of counterterms which arise in the lattice action of N ¼ 1

supersymmetric QCD (SQCD). In particular, the fine-tunings for quartic couplings are studied in detail
through both continuum and lattice perturbation theory at one-loop level. For the lattice version of SQCD
we make use of the Wilson gauge action for gluon fields and the Wilson fermion action for fermion fields
(quarks, gluinos); for squark fields we use naïve discretization. On the lattice, different components of
squark fields mix among themselves and a total of ten quartic terms arise at the quantum level.
Consequently, the renormalization conditions must take into account these effects in order to appropriately
fine-tune all quartic couplings. All our results for Green’s functions and renormalization factors exhibit an
explicit analytic dependence on the number of colors, Nc, the number of flavors, Nf , and the gauge
parameter, α, which are left unspecified. Results for the specific case Nf ¼ 1 are also presented, where the
symmetries allow only five linearly independent quartic terms. For the calculation of the Green’s functions,
we consider both one-particle reducible and one-particle irreducible Feynman diagrams. Knowledge of
these renormalization factors is necessary in order to relate numerical results, coming from nonperturbative
studies, to “physical” observables.
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I. INTRODUCTION

Supersymmetric models of strongly coupled theories
hold immense promise as a frontier for exploring Beyond
the Standard Model (BSM) physics. In recent years, the
prospects of simulating supersymmetric extensions of
quantum chromodynamics (QCD) on a lattice have become
increasingly tangible. However, this endeavor faces several
significant difficulties due to the breaking of supersym-
metry (SUSY) within the lattice framework [1–5]. These
challenges include the need to fine-tune the parameters of
the bare Lagrangian [3,6].
As is the case with all known consistent regulators, the

lattice breaks supersymmetry explicitly but it is the only
regulator which describes many aspects of strong inter-
actions nonperturbatively. Note that the coupling constants

appearing in the lattice action are not all identical. On one
hand, gauge invariance, which is intact on the lattice,
dictates that some of the interaction parts will have the same
coupling, g (gauge coupling); this is the case for the
kinematic terms which contain covariant derivatives and
thus gluons couple with quarks, squarks, gluinos and
other gluons with the same gauge coupling constant.
The Yukawa interactions between quarks, squarks, and
gluinos, as well as the four-squark interactions, involve
different coupling constants, which must be fine-tuned on
the lattice. As is typical in lattice formulations, these
coupling constants are bare, and restoring supersymmetry
requires fine-tuning these bare lattice couplings as the
continuum limit is approached. Exploiting the symmetries
of the action, we reduce the number of possible interaction
terms and, therefore, their tuning [3]. It is desirable to
employ a lattice discretization which preserves as many as
possible of the continuum symmetries, so that the relevant
operators to be tuned will be fewer. The overlap formu-
lation can be used, in order to preserve chiral symmetry, but
we will first investigate these tunings using the Wilson
fermion action. The use of the overlap action is beyond the
scope of the present work.
Lattice studies of supersymmetric Yang-Mills (SYM)

theories have already accumulated a rich spectrum of both
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perturbative and nonperturbative results, significantly
advancing our understanding of these theories in various
dimensions, see e.g., [5,7–12]. These studies have shed
light on the nonperturbative dynamics of SYM theories,
such as confinement, the mass spectrum of the lightest
bound states, and the emergence of spontaneous symmetry
breaking, through the generation of a gluino condensate.
Furthermore, perturbative investigations using specific
regulators, e.g., [13–20], have contributed to precise
determinations of counterterms, fine-tuning of parameters,
and the renormalization of SUSY operators.
N ¼ 1 supersymmetric quantum chromodynamics

(SQCD) serves as a prototype theory for supersymmetric
extensions of the Standard Model. While several features of
the Standard Model, notably its chiral nature, are not
present in SQCD, nevertheless SQCD provides a valuable
paradigm for studying the dynamics of supersymmetric
gauge theories. The study of its bound states, phase
structure, and the mechanism of spontaneous supersym-
metry breaking is expected to provide insights into analo-
gous phenomena that could occur beyond the Standard
Model. This makes SQCD an important framework for
exploring how supersymmetry might manifest itself in
nature and its potential impact on particle physics at higher
energy scales.
In this work, we focus on the renormalization of the

quartic coupling in SQCD, which completes the fine-tuning
of all parameters and fields of the SQCD Lagrangian
[21–23]. Our methodology involves calculations of
Green’s functions with four external squarks, extending

up to one loop and to the lowest order in the lattice spacing.
This approach enables us to renormalize the quartic
couplings that appear in the SQCD action. At the same
time, these Green’s functions are instrumental in studying
phenomena such as the supersymmetric phase transition
through the analysis of the four-squark effective potential.
Our results for the renormalized quartic couplings are

obtained using the Wilson gauge action for the gluon fields.
For fermions (quark, gluino fields) we employ the Wilson
fermion action, and for the squark fields we use naïve
discretization. After presenting the basics of the computa-
tion setup (Sec. II), we address the renormalization of
the quartic couplings (Sec. III) both in dimensional and
lattice regularizations. We utilize the MS renormalization
scheme and we calculate the fine-tunings for all quartic
couplings to one-loop order. Finally, we end with a short
outlook (Sec. IV).

II. FORMULATION AND
COMPUTATIONAL SETUP

In the Wess-Zumino (WZ) gauge, the SQCD action
contains the following fields: the gluon together with
the gluino; and for each quark flavor, a Dirac fermion
(quark) and two squarks. In the following we briefly
define our notation. Although the action of SQCD used
in this calculation can be found in literature, e.g. in
Refs. [21,24,25], we present it here for completeness’
sake; in the continuum and in Minkowski space, the action
of SQCD is1

SSQCD ¼
Z

d4x

�
−
1

4
uαμνuμνα þ

i
2
λ̄αγμDμλ

α −DμA
†
þDμAþ −DμA−DμA†

− þ iψ̄γμDμψ

− i
ffiffiffi
2

p
gðA†

þλ̄αTαPþψ − ψ̄P−λ
αTαAþ þ A−λ̄

αTαP−ψ − ψ̄PþλαTαA†
−Þ

−
1

2
g2ðA†

þTαAþ − A−TαA†
−Þ2 þmðψ̄ψ −mA†

þAþ −mA−A†
−Þ
�
; ð1Þ

where ψ (uμ) is the quark (gluon) field, λ is the gluino field
and A� are the squark field components; Tα are the
generators of the SUðNcÞ gauge group and P� are
projectors: P� ¼ ð1� γ5Þ=2. The generators satisfy the
commutation relation

½Tα; Tβ� ¼ ifαβγTγ; ð2Þ

where fαβγ are the structure constants of the Lie algebra and
the normalization is chosen such that

TrðTαTβÞ ¼ 1

2
δαβ: ð3Þ

Besides an implicit color index, quark and squark fields (as
well as their masses, m) carry also an implicit flavor index;
a summation over repeated indices is intended.2 The
definitions of the covariant derivatives and of the gluon
field tensor are

1In what follows, the letter “α,” appearing as a superscript,
stands for a color index in the adjoint representation, not to be
confused with the gauge fixing parameter “α.”

2Note that the first parenthesis in the last line of Eq. (1) has an
implicit double summation over independent flavor indices.
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DμAþ ¼ ∂μAþ þ iguαμTαAþ
DμA†

− ¼ ∂μA†
− þ iguαμTαA†

−

DμA− ¼ ∂μA− − igA−Tαuαμ

DμA
†
þ ¼ ∂μA

†
þ − igA†

þTαuαμ

Dμψ ¼ ∂μψ þ iguαμTαψ

Dμλ ¼ ∂μλþ ig½uμ; λ�
uμν ¼ ∂μuν − ∂νuμ þ ig½uμ; uν�: ð4Þ

The above action is invariant upon these supersymmetric
transformations

δξAþ¼−
ffiffiffi
2

p
ξ̄Pþψ ;

δξA−¼−
ffiffiffi
2

p
ψ̄Pþξ;

δξðPþψÞ¼ i
ffiffiffi
2

p
ðDμAþÞPþγμξ−

ffiffiffi
2

p
mPþξA†

−;

δξðP−ψÞ¼ i
ffiffiffi
2

p
ðDμA−Þ†P−γ

μξ−
ffiffiffi
2

p
mAþP−ξ;

δξuαμ¼−iξ̄γμλα;

δξλ
α¼1

4
uαμν½γμ;γν�ξ− igγ5ξðA†

þTαAþ−A−TαA†
−Þ: ð5Þ

As in the case with the quantization of ordinary gauge
theories, additional infinities will appear upon functionally
integrating over gauge orbits. The standard remedy is to
introduce a gauge-fixing term in the Lagrangian, along with
a compensating Faddeev-Popov ghost term. The resulting
Lagrangian, though no longer manifestly gauge invariant, is
still invariant under Becchi-Rouet-Stora-Tyutin (BRST)
transformations. This procedure of gauge fixing guarantees
that Green’s functions of gauge invariant objects will be
gauge independent to all orders in perturbation theory. We
use the ordinary gauge fixing term and ghost contribution
arising from the Faddeev-Popov gauge fixing procedure

SE
GF ¼

1

α

Z
d4xTrð∂μuμÞ2; ð6Þ

where α is the gauge parameter [α ¼ 1ð0Þ corresponds to
Feynman (Landau) gauge], and

SE
Ghost ¼ −2

Z
d4xTrðc̄∂μDμcÞ; ð7Þ

where the ghost field c is a Grassmann scalar which
transforms in the adjoint representation of the gauge group,
and: Dμc ¼ ∂μcþ ig½uμ; c�. This gauge fixing term breaks
supersymmetry. However, given that the gauge-invariant
sector of the renormalized theory does not depend on the
choice of a gauge fixing term, and given that all known
regularizations, in particular the lattice regularization,
violate supersymmetry at intermediate steps, one may
choose this standard covariant gauge fixing term.
In Refs. [21,22], first lattice perturbative computations in

the context of SQCD were presented; there, apart from the
Yukawa and quartic couplings, we extracted the renorm-
alization of all parameters and fields appearing in Eq. (1)
using Wilson gluons and fermions. In addition, we
explored the mixing of some composite operators under
renormalization. The results in these Refs. [21,22] will find
further use in the present work. In this article we calculate
the fine-tunings of the 4-squark quartic couplings, which
are an essential prerequisite toward nonperturbative inves-
tigations. Note that we have also calculated the fine-tunings
of the Yukawa couplings in Ref. [23].
From this point on, we switch to Euclidean space. In our

lattice calculation, we extend Wilson’s formulation of the
QCD action, to encompass SUSY partner fields as well. In
this standard discretization quarks, squarks and gluinos are
defined on the lattice sites, while gluons are defined on the
links of the lattice: UμðxÞ ¼ eigaT

αuαμðxþaμ̂=2Þ; α is a color
index in the adjoint representation of the gauge group. This
formulation leaves no SUSY generators intact, and it also
breaks chiral symmetry; thus, the need for fine-tuning will
arise in numerical simulations of SQCD. For Wilson-type
quarks and gluinos, the Euclidean action SL

SQCD on the
lattice becomes

SL
SQCD ¼ a4

X
x

�
Nc

g2
X
μ;ν

�
1 −

1

Nc
TrUμν

�
þ
X
μ

Trðλ̄γμDμλÞ − a
r
2
Trðλ̄D2λÞ

þ
X
μ

ðDμA
†
þDμAþ þDμA−DμA†

− þ ψ̄γμDμψÞ − a
r
2
ψ̄D2ψ

þ i
ffiffiffi
2

p
gðA†

þλ̄αTαPþψ − ψ̄P−λ
αTαAþ þ A−λ̄

αTαP−ψ − ψ̄PþλαTαA†
−Þ

þ 1

2
g2ðA†

þTαAþ − A−TαA†
−Þ2 −mðψ̄ψ −mA†

þAþ −mA−A†
−Þ
�
; ð8Þ

where: a is the lattice spacing,UμνðxÞ¼UμðxÞUνðxþaμ̂Þ×
U†

μðxþaν̂ÞU†
νðxÞ, and a summation over flavors is under-

stood in the last three lines of Eq. (8). The 4-vector x is
restricted to the values x ¼ na, with n being an integer

4-vector. The terms proportional to theWilson parameter, r,
eliminate the problem of fermion doubling, at the expense
of breaking chiral invariance. In the limit a → 0 the
classical lattice action reproduces the continuum one.
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The bare couplings for the Yukawa and quartic terms [last
two lines of Eq. (8)] need not coincide with the gauge
coupling g; this requirement is imposed on the respective
renormalized values. In the following we will choose the
standard value r ¼ 1 for the Wilson parameter.
The definitions of the covariant derivatives are as

follows:

DμλðxÞ≡ 1

2a
½UμðxÞλðxþ aμ̂ÞU†

μðxÞ
−U†

μðx − aμ̂Þλðx − aμ̂ÞUμðx − aμ̂Þ� ð9Þ

D2λðxÞ≡ 1

a2
X
μ

½UμðxÞλðxþ aμ̂ÞU†
μðxÞ − 2λðxÞ

þU†
μðx − aμ̂Þλðx − aμ̂ÞUμðx − aμ̂Þ� ð10Þ

DμψðxÞ≡ 1

2a
½UμðxÞψðxþ aμ̂Þ −U†

μðx − aμ̂Þψðx − aμ̂Þ�
ð11Þ

D2ψðxÞ≡ 1

a2
X
μ

½UμðxÞψðxþ aμ̂Þ − 2ψðxÞ

þ U†
μðx − aμ̂Þψðx − aμ̂Þ� ð12Þ

DμAþðxÞ≡ 1

a
½UμðxÞAþðxþ aμ̂Þ − AþðxÞ� ð13Þ

DμA
†
þðxÞ≡ 1

a
½A†

þðxþ aμ̂ÞU†
μðxÞ − A†

þðxÞ� ð14Þ

DμA−ðxÞ≡ 1

a
½A−ðxþ aμ̂ÞU†

μðxÞ − A−ðxÞ� ð15Þ

DμA†
−ðxÞ≡ 1

a
½UμðxÞA†

−ðxþ aμ̂Þ − A†
−ðxÞ� ð16Þ

Note that in Eqs. (13)–(16), in order not to involve more
that two lattice points, we do not use the symmetric
derivative.
By analogy to the continuum case, a discrete version of a

gauge-fixing term, together with the compensating ghost
field term, must be added to the action, in order to avoid
divergences from the integration over gauge orbits; these
terms are the same as in the nonsupersymmetric case.
Although these terms can be found in literature, we present
them here for the sake of completeness

SLGF ¼
1

2α
a2
X
x

X
μ

Trðuμðxþ aμ̂=2Þ − uμðx − aμ̂=2ÞÞ2: ð17Þ

SLGhost ¼ 2a2
X
x

X
μ

Tr

�
ðc̄ðxþ aμ̂Þ − c̄ðxÞÞ

�
cðxþ aμ̂Þ − cðxÞ

þ ig½uμðxþ aμ̂=2Þ; cðxÞ� þ 1

2
ig½uμðxþ aμ̂=2Þ; cðxþ aμ̂Þ − cðxÞ�

−
1

12
g2½uμðxþ aμ̂=2Þ; ½uμðxþ aμ̂=2Þ; cðxþ aμ̂Þ − cðxÞ��

��
þOðg3Þ: ð18Þ

Similarly, a standard “measure” term must be added to the
action, in order to account for the Jacobian in the change of
integration variables: Uμ → uμ

SLM ¼ g2Nc

12
a2
X
x

X
μ

Trðuμðxþ aμ̂=2Þ2Þ þOðg4Þ: ð19Þ

Parity P and charge conjugation C are symmetries
of the lattice action and their definitions are presented
below.

P∶

8>>>>>>>>>>>><
>>>>>>>>>>>>:

U0ðxÞ→U0ðxPÞ; UkðxÞ→U†
kðxP −ak̂Þ; k¼ 1;2;3

ψðxÞ→ γ0ψðxPÞ
ψ̄ðxÞ→ ψ̄ðxPÞγ0
λαðxÞ→ γ0λ

αðxPÞ
λ̄αðxÞ→ λ̄αðxPÞγ0
A�ðxÞ→A†∓ðxPÞ
A†
�ðxÞ→A∓ðxPÞ

ð20Þ

where xP ¼ ð−x; x0Þ.
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C∶

8>>>>>>>>>>>><
>>>>>>>>>>>>:

UμðxÞ → U⋆
μ ðxÞ; μ ¼ 0; 1; 2; 3

ψðxÞ → −Cψ̄ðxÞT
ψ̄ðxÞ → ψðxÞTC†

λðxÞ → Cλ̄ðxÞT
λ̄ðxÞ → −λðxÞTC†

A�ðxÞ → A∓ðxÞ
A†
�ðxÞ → A†∓ðxÞ

ð21Þ

where T means transpose (also in the SUðNcÞ generators
implicit in the gluino fields). The matrix C satisfies:
ðCγμÞT ¼ Cγμ, CT ¼ −C and C†C ¼ 1. In 4 dimensions,
in a standard basis for γ matrices, in which γ0, γ2 (γ1, γ3) are
(anti)symmetric, C ¼ −iγ0γ2. Note that all operators that
we consider here are flavor singlets.
Further symmetries in the massless case are
Uð1ÞR rotates the quark and gluino fields in opposite

direction

R∶

8>>><
>>>:

ψðxÞ → eiθγ5ψðxÞ
ψ̄ðxÞ → ψ̄ðxÞeiθγ5
λðxÞ → e−iθγ5λðxÞ
λ̄ðxÞ → λ̄ðxÞe−iθγ5

ð22Þ

The R-symmetry does not commute with the SUSY
generators.
Uð1ÞA rotates the squark and the quark fields in the same

direction as follows:

χ∶

8>>><
>>>:

ψðxÞ → eiθ
0γ5ψðxÞ

ψ̄ðxÞ → ψ̄ðxÞeiθ0γ5
A�ðxÞ → eiθ

0
A�ðxÞ

A†
�ðxÞ → e−iθ

0
A†
�ðxÞ

ð23Þ

Another interesting feature of the SQCD action that can be
investigated on the lattice, by using Ginsparg-Wilson
gluinos and massless Ginsparg-Wilson quarks, is the
conservation of an anomaly-free combination of χ ×R,
taking into account the values of the parameters Nc and
Nf [26] which enter the phases of χ and R.
We compute, perturbatively, the relevant four-point

(4-pt) Green’s functions using both dimensional regulari-
zation (DR) in D ¼ 4 − 2ϵ dimensions and lattice regu-
larization (LR). These one-loop computations are the
crux of this paper and sheer difficulties involving SQCD
action and its discretization as well as four-point Green’s
functions are quite complicated. Combining the results for
the bare Green’s functions on the lattice and the renormal-
ized Green’s functions found in the continuum, we are
able to extract the renormalization factors appropriate
to lattice regularization and MS renormalization scheme.

The renormalizations of the gluon and squark fields and the
gauge coupling are a prerequisite for the renormalization of
the quartic couplings, since renormalization conditions in
vertex corrections involve these quantities.
The 4-point Green’s functions involve four external

squark fields in momentum space. For completeness, we
also present our conventions for Fourier transformations

ψ̃ðqÞ ¼
Z

d4x e−iq·xψðxÞ ð24Þ

Ã�ðqÞ ¼
Z

d4x e∓iq·xA�ðxÞ ð25Þ

ũμðqÞ ¼
Z

d4x e−iq·xuμðxÞ ð26Þ

λ̃ðqÞ ¼
Z

d4x e−iq·xλðxÞ ð27Þ

To avoid heavy notation, we will omit the tilde from the
Fourier-transformed fields. These fields will be understood
from their arguments.
There exist several prescriptions [27] for defining γ5

in D dimensions, such as the naïve dimensional regulari-
zation (NDR) [28], the ’t Hooft-Veltman (HV) [29], the
DRED [30], and the DREZ prescriptions (see, e.g.,
Ref. [31]). They are related among themselves via finite
conversion factors [32]. In our calculation, we apply the
NDR and HV prescriptions. The latter prescription does not
violate chiral Ward identities involving pseudoscalar and
axial-vector operators in D dimensions. The metric tensor,
ημν, and the Dirac matrices, γμ, satisfy the following
relations in D dimensions

ημνημν ¼ D; fγμ; γνg ¼ 2δμν1: ð28Þ

In NDR, the definition of γ5 satisfies

fγ5; γμg ¼ 0; ∀ μ; ð29Þ

whereas in HV it satisfies

fγ5; γμg ¼ 0; μ ¼ 1; 2; 3; 4; ½γ5; γμ� ¼ 0; μ > 4: ð30Þ

III. RENORMALIZATION OF THE
QUARTIC COUPLING

In this section, we present our one-loop calculations for
the bare 4-point Green’s functions and the renormalization
factors of the quartic couplings in the MS scheme, employ-
ing both dimensional regularization (DR) and lattice
regularization (LR). To renormalize the quartic couplings,
we impose specific renormalization conditions, ensuring
the cancellation of divergences in the corresponding bare
4-point amputated Green’s functions with four external
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squark fields. Applying these renormalization factors to the
bare Green’s functions yields the renormalized Green’s
functions, which are independent of the regulator (ϵ in DR,
a in LR). In our continuum calculations we employ the HV
prescription.
Quartic couplings (four-squark interactions) must be

appropriately fine-tuned on the lattice. The gauge sym-
metry allows two squarks to lie in the fundamental
representation (Aþ; A†

−) and the other two in the antifun-
damental (A†

þ; A−); ignoring flavor indices for the moment,
there are ten possible types of counterterms related to
quartic couplings

ðA†
þAþÞðA†

þAþÞ; ðA−A†
−ÞðA−A†

−Þ;
ðA†

þAþÞðA−A†
−Þ; ðA†

þA†
−ÞðA†

þA†
−Þ;

ðA−AþÞðA−AþÞ; ðA−AþÞðA†
þA†

−Þ;
ðA†

þAþÞðA†
þA†

−Þ; ðA†
þAþÞðA−AþÞ;

ðA−A†
−ÞðA†

þA†
−Þ; ðA−A†

−ÞðA−AþÞ ð31Þ

Pairs of squark fields in parentheses denote color-singlet
combinations. We will be calculating a total of 9 Green’s
functions containing four squarks, namely those for
which each of the 10 potential counterterms of Eq. (31)
has a nonzero lowest order contribution. [Note that
ðA†

þAþÞðA−A†
−Þ and ðA−AþÞðA†

þA†
−Þ contribute to the same

Green’s function.] Note that the first three terms from
Eq. (31) appear in the SQCD action and they will be used to
obtain the renormalization factor of the quartic coupling.
The other terms can (and will) appear as counterterms, in
combinations which are invariant under all symmetries of
the lattice SQCD action, including C and P symmetries.

For the case where the flavor number isNf ¼ 1, there are
only five possible combinations [33], which are the first five
terms in Table I; compared to the terms present in the SQCD
action, there are four more terms (λ2, λ3, λ4, λ5). However, in
this study, we consider Nf fundamental multiplets, and the
flavor symmetries allow for an additional five “Fierz-
transform” operators to be fine-tuned. To clarify, we provide
an example of an operator with Nf > 1 that can and will
contribute to the fine-tuning on the lattice

O ¼
X

c;c0;f;f0
ðAc

−fA
c†
−fÞðAc0

−f0A
c0
þf0 Þ

OF ¼
X

c;c0;f;f0
ðAc

−fA
c†
−f0 ÞðAc0

−f0A
c0
þfÞ;

where the superscript letterF stands for Fierz, the flavor and
color indices are denoted by Latin letters f, f0 and c, c0,
respectively. Since Nf remains unspecified throughout our
calculations, there are ten possible combinations of quartic
squark terms, as shown in Table I.
Making use of the transformation χ ×R for the

combinations shown in Table I, ðA†
þA†

−Þ2 þ ðA−AþÞ2 and
ðA†

þA†
− þ A−AþÞðA†

þAþ þ A−A†
−Þ are not invariant; how-

ever, they may appear in our one-loop computations, given
that the lattice Lagrangian is not invariant under this
transformation.
The first combination in Table I aligns with the first term

of the fourth line of Eq. (8). However, at the quantum level,
the other combinations may emerge, having a potentially
different quartic coupling, denoted as λi. In the classical
continuum limit, λ1 corresponds to g2, while λ2−5 and λF1−5
vanish; thus, the tree-level values of λi (quartic couplings)
which satisfy SUSY are

TABLE I. Dimension-4 operators which are gauge invariant and flavor singlets. All operators appearing in this
table are eigenstates of charge conjugation, C, and parity, P, with eigenvalue 1. The flavor indices (f, f0) on the
squark fields are explicitly displayed, while the color indices, which are the same within each parenthesis, are
implicit; a summation is implied over all flavor and color indices. The parameters λi and λFi denote the ten quartic
couplings.

Operators C P

λ1½ðA†
þfT

αAþfÞðA†
þf0T

αAþf0 Þ − 2ðA†
þfT

αAþfÞðA−f0TαA†
−f0 Þ þ ðA−fTαA†

−fÞðA−f0TαA†
−f0 Þ�=2 þ þ

λ2½ðA†
þfA

†
−fÞðA†

þf0A
†
−f0 Þ þ ðA−fAþfÞðA−f0Aþf0 Þ� þ þ

λ3ðA†
þfAþfÞðA−f0A

†
−f0 Þ þ þ

λ4ðA†
þfA

†
−fÞðA−f0Aþf0 Þ þ þ

λ5ðA†
þfA

†
−f þ A−fAþfÞðA†

þf0Aþf0 þ A−f0A
†
−f0 Þ þ þ

λF1 ½ðA†
þfT

αAþf0 ÞðA†
þf0T

αAþfÞ − 2ðA†
þfT

αAþf0 ÞðA−f0TαA†
−fÞ þ ðA−fTαA†

−f0 ÞðA−f0TαA†
−fÞ�=2 þ þ

λF2 ½ðA†
þfA

†
−f0 ÞðA†

þf0A
†
−fÞ þ ðA−fAþf0 ÞðA−f0AþfÞ� þ þ

λF3 ðA†
þfAþf0 ÞðA−f0A

†
−fÞ þ þ

λF4 ðA†
þfA

†
−f0 ÞðA−f0AþfÞ þ þ

λF5 ðA†
þfA

†
−f0 þ A−fAþf0 ÞðA†

þf0Aþf þ A−f0A
†
−fÞ þ þ
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λ1 ¼ g2;

λ2 ¼ λ3 ¼ λ4 ¼ λ5 ¼ λF1 ¼ λF2 ¼ λF3 ¼ λF4 ¼ λF5 ¼ 0: ð32Þ

These couplings receive quantum corrections, coming
from the Feynman diagrams of Figs. 2 and 3. Note that here
we retain a nonzero mass for quarks and squarks in order to
avoid IR divergences. It is worth mentioning that the
Majorana nature of gluinos manifests itself in some dia-
grams, in which λ − λ as well as λ̄ − λ̄ propagators appear.
The Majorana condition is the following:

ðλ̄αÞT ¼ Cλα; ð33Þ
and the tree-level propagators that relate λ − λ and λ̄ − λ̄ are

hλα1ðq1Þλα2ðq2Þitree ¼ 2iδα1α2δðq1 þ q2Þ
1

=q1
C† ð34Þ

hλ̄α1ðq1Þλ̄α2ðq2Þitree ¼ −2iCδα1α2δðq1 þ q2Þ
1

=q2
: ð35Þ

As in the case of the Yukawa coupling [23], for
convenience of computation, we are free to make appro-
priate choices of the external momenta in 4-point Green’s
functions. Having checked that no superficial IR divergen-
ces will be generated, we will compute the diagrams by
setting to zero the momenta of the two external squark
fields in the fundamental representation. This choice of
exceptional external momenta is allowed provided that the
matter fields are massive; such a requirement would not be
necessary for four-point Green’s functions with generic
external momenta, to one-loop order. Furthermore, these
four-point Green’s functions will be symmetric with respect
to the exchange of identical external fields.
Let us first present the tree-level Green’s functions,

whose Feynman diagrams are shown in Fig. 1, with four
external squarks.3 Note that, in all Green’s functions which
follow, two out of the four momenta qi (those correspond-
ing to squarks in the fundamental representation) will be
zero, as explained above; consequently, the Green’s func-
tions are off-shell, and this explains also their dependence
on the gauge parameter.

hA†α1
þf1

ðq1ÞA†α2
þf2

ðq2ÞAα3
þf3

ðq3ÞAα4
þf4

ðq4Þitree

¼ hA†α1
−f1ðq1ÞA

†α2
−f2ðq2ÞA

α3
−f3ðq3ÞA

α4
−f4ðq4Þitree

¼ 1

2Nc
g2ð−1 − αÞ

× ½δf1f3δf2f4ð−δα1α3δα2α4 þ Ncδ
α1α4δα2α3Þ

þ δf1f4δf2f3ð−δα1α4δα2α3 þ Ncδ
α1α3δα2α4Þ� ð36Þ

hA†α1
þf1

ðq1ÞAα2
þf2

ðq2ÞA†α3
−f3ðq3ÞA

α4
−f4ðq4Þitree

¼ 1

2Nc
g2ð1 − αÞδf1f2δf4f3ðNcδ

α1α3δα4α2 − δα1α2δα4α3Þ

ð37Þ
where fi are the flavor indices of the external squark fields.
The rest of the tree-level Green’s functions with four
external squarks are zero. In the calculation of Green’s
functions, both one-particle irreducible (1PI) and one-
particle reducible (1PR) Feynman diagrams are considered.
The one-loop diagrams in the continuum are shown in
Figs. 2 and 3 respectively; further diagrams contributing on
the lattice are shown in Fig. 4.
In order to obtain the renormalized quartic couplings, we

impose renormalization conditions which require the can-
cellation of divergences present in the corresponding bare
4-pt Green’s functions with external squark fields and thus,
the renormalization factors are defined in such a way as to
remove all divergences. The application of the renormal-
ization factors on the bare Green’s functions leads to the
renormalized Green’s functions, which are independent of
the regulator (ϵ in DR, a in LR).
The choice of the external momenta for Green’s func-

tions will not affect their pole parts in DR or their
logarithmic dependence on the lattice spacing in LR.
Since the difference between the MS-renormalized and
the corresponding bare Green’s function enters in the
extraction of the one-loop renormalization of the quartic
couplings, we present below this difference. Since this
difference must be polynomial in the external fields (of 0th
order for the Green’s function of interest), it becomes
apparent that our simplifying choice of values for the
external momenta has no impact on the results for the
quartic couplings. In the case of finite bare Green’s
functions, the MS-renormalized Green’s functions coincide
with the bare ones in DR, by the very definition of MS4

FIG. 1. Tree-level Feynman diagrams with four external squark
fields. The second diagram can have mirror variants. Awavy line
represents gluons and a dotted line corresponds to squarks. Squark
lines could be further marked with a þð−Þ sign, to denote an
AþðA−Þ field. The 4-squark vertex of the action has been denoted
by a solid rectangle, in order to indicate the squark-antisquark color
pairing; all remaining vertices are denoted by a solid circle. An
arrow entering (exiting) a vertex denotes a Aþ; A†

− (A†
þ; A−) field.

3In all 4-point Green’s functions presented below an overall
factor of ð2πÞ4δð�q1 � q2 � q3 � q4Þ is understood; the sign in
front of each momentum is þ if it corresponds to an A†

þ or A−
field, and it is − otherwise.

4Note, however, the MS-renormalized Green’s functions may
not exhibit SUSY invariance; in that case, an extra finite
renormalization factor would be required, effectively taking us
from the MS scheme to a SUSY preserving scheme.
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hA†α1
þf1

ðq1ÞA†α2
þf2

ðq2ÞAα3
þf3

ðq3ÞAα4
þf4

ðq4ÞiMS;1 loop − hA†α1
þf1

ðq1ÞA†α2
þf2

ðq2ÞAα3
þf3

ðq3ÞAα4
þf4

ðq4ÞiDR;1 loop

¼ hA†α1
−f1ðq1ÞA

†α2
−f2ðq2ÞA

α3
−f3ðq3ÞA

α4
−f4ðq4ÞiMS;1 loop − hA†α1

−f1ðq1ÞA
†α2
−f2ðq2ÞA

α3
−f3ðq3ÞA

α4
−f4ðq4ÞiDR;1 loop

¼ g4

64π2N2
c

1

ϵ
ð2þ 4N2

c þ αð−2αþ 3ð1þ αÞN2
cÞ − 2NcNfÞ

× ½δf1f3δf2f4ð−δα1α3δα2α4 þ Ncδ
α1α4δα2α3Þ þ δf1f4δf2f3ð−δα1α4δα2α3 þ Ncδ

α1α3δα2α4Þ� ð38Þ

hA†α1
þf1

ðq1ÞAα2
þf2

ðq2ÞA†α3
−f3ðq3ÞA

α4
−f4ðq4ÞiMS;1 loop − hA†α1

þf1
ðq1ÞAα2

þf2
ðq2ÞA†α3

−f3ðq3ÞA
α4
−f4ðq4ÞiDR;1 loop

¼ g4

64π2N2
c

1

ϵ
ð−2 − 4N2

c þ αð4 − N2
c þ αð−2þ 3N2

cÞÞ þ 2NcNfÞδf1f2δf4f3ðNcδ
α1α3δα4α2 − δα1α2δα4α3Þ ð39Þ

The remaining Green’s functions exhibit no pole parts.
The difference between the renormalized Green’s functions
and the corresponding Green’s functions regularized on the
lattice allows us to deduce the one-loop renormalized
quartic couplings. We emphasize that our results are

mass-independent, as expected given that the difference
between lattice and continuum Green’s functions must
be a polynomial of zeroth order in the momenta, and
therefore, the mass could not be present for dimensional
reasons.

FIG. 2. One-loop 1PI Feynman diagrams leading to the fine-tuning of the quartic couplings. A solid (dashed) line corresponds to
quarks (gluinos). In the above diagrams the directions of the external line depend on the particular Green’s function under study. An
arrow entering (exiting) a vertex denotes a λ;ψ ; Aþ; A†

− (λ̄; ψ̄ ; A†
þ; A−) field. Squark lines could be further marked with a þð−Þ sign, to

denote an AþðA−Þ field. All diagrams can have mirror variants. In diagrams 4 and 5, there are additional variants in which two external
outgoing (or incoming) lines stem from a 4-squark vertex.
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For the sake of completeness we present the definition of
the renormalization factor of the gauge coupling here

g≡ gB ¼ Z−1
g μϵgR; ð40Þ

where B stands for bare and R for renormalized quantities
and μ is the arbitrary scale appearing in DR with dimen-
sions of inverse length. For one-loop calculations, the
distinction between gR and gB is inessential in many cases;
we will simply use g in those cases.

Note also that the components of the squark fields may
mix at the quantum level, via a 2 × 2 mixing matrix (ZA).
We define the renormalization mixing matrix for the squark
fields as follows:

�
ARþ
AR†
−

�
¼ ðZ1=2

A Þ
�

ABþ
AB†
−

�
: ð41Þ

However, in Ref. [21] we found that in the DR and MS
scheme this 2 × 2 mixing matrix is diagonal. On the lattice

FIG. 3. One-loop 1PR Feynman diagrams leading to the fine-tuning of the quartic couplings. Notation is identical to that of Fig. 2.
Note that the “double dashed” line is the ghost field. All diagrams can have mirror variants. Unlike gluon tadpoles which vanish in
dimensional regularization, the massive squark tadpole gives a nonzero contribution (diagram 21).
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this matrix is non diagonal; rather, it is found to be a real
and symmetric matrix and the component AþðA−Þ mixes
with A†

−ðA†
þÞ. Thus, on the lattice the renormalization

conditions are more complicated.
The renormalization factor of the gauge parameter Zα is

defined as follows:

αR ¼ Z−1
α Zuα

B; ð42Þ

where Zu is the renormalization factor of the gluon field,
defined as

uRμ ¼
ffiffiffiffiffiffi
Zu

p
uBμ : ð43Þ

By calculating the gluon self energy, it is found to be
transverse, reflecting the gauge invariance of the theory.
Since there is no longitudinal part for the gluon self energy,
Zα receives no one-loop contribution.
In DR, we are interested in eliminating the pole parts in

bare continuum Green’s functions; this requires not only
the renormalization factors of the fields, of the gauge
coupling, Zg, and of the gauge parameter, Zα, but requires a
special treatment of the bare quartic coupling multiplying
also with Zλ1 . The quartic coupling is renormalized as
follows:

λB1 ¼ Z−1
λ1
Z−2
g μ2ϵðgRÞ2; λR1 ¼ ðgRÞ2: ð44Þ

At tree-level order, it holds that Z2
gZλ1 ¼ 1, and conse-

quently, the renormalized quartic coupling aligns with the
gauge coupling.
Considering the example of the Green’s function in DR

with four external squark fields Aþ and A†
þ, the renorm-

alization condition is expressed as follows:

hAþðq1ÞA†
þðq2ÞAþðq3ÞA†

þðq4ÞijMS

¼ ðZ−2
A ÞþþhAþðq1ÞA†

þðq2ÞAþðq3ÞA†
þðq4Þijbare ð45Þ

All appearances of coupling constants, and the gauge
parameter in the right-hand side of Eq. (45) must be
expressed in terms of their renormalized values, via
Eqs. (40), (42), and (44).
The renormalization factors in DR which appear in the

right-hand side of the renormalization condition are

ZDR;MS
A� ¼ 1þ g2CF

16π2
1

ϵ
ð−1þ αÞ ð46Þ

ZDR;MS
g ¼ 1þ g2

16π2
1

ϵ

�
3

2
Nc −

1

2
Nf

�
ð47Þ

ZDR;MS
u ¼ 1þ g2

16π2
1

ϵ

��
α

2
−
3

2

�
Nc þ Nf

�
ð48Þ

ZDR;MS
α ¼ 1þOðg4Þ ð49Þ

where CF ¼ ðN2
c − 1Þ=ð2NcÞ is the quadratic Casimir

operator in the fundamental representation.
Utilizing Eq. (45) for all bare Green’s functions that have

pole parts [see Eqs. (38) and (39)], we obtain the same

value for the renormalization factor of λDR;MS
1 :

Zλ1
DR;MS ¼ 1þOðg4Þ ð50Þ

As expected, we obtain the same value for the renormal-

ization factor of λDR;MS
1 by setting to zero the momenta of

the squark fields that lie in the antifundamental represen-
tation, instead of those in the fundamental representation.

FIG. 4. Additional one-loop Feynman diagrams leading to the fine-tuning of the quartic couplings on the lattice. Notation is identical
to that of Fig. 2. Note that the solid box in diagram 27 comes from the measure part of the lattice action.
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Equation (50) implies that, choosing the bare parameters
λB1 and gB to satisfy: λB1 ¼ ðgBÞ2, leads at one-loop level to
the corresponding desired relation between renormalized
couplings: λR1 ¼ ðgRÞ2. This observation carries significant
implications for our comprehension of the renormalization
scheme in SQCD. Furthermore, it indicates that the
corresponding renormalization on the lattice will be finite.
While terms proportional to λ2 − λ5 and λF1 − λF5 do not
manifest themselves in the MS renormalization using DR, a
finite mixture of these terms may emerge in MS on the
lattice. We anticipate that the MS renormalization factors of
gauge-invariant quantities will also be gauge-independent

on the lattice, mirroring the behavior of ZDR;MS
λ1

.

Shifting our focus to LR, it is crucial to note that despite
the diagonal nature of the renormalization matrix of the
squark fields in the MS scheme and in DR, such simplicity
does not carry over to the lattice. On the lattice, the mixing
between squark components arises through the matrix ZA,
where the nondiagonal matrix elements are nonzero.
Therefore, the renormalization conditions are not as
straightforward as depicted in Eq. (45).
Taking into account the additional vertices on the lattice,

we need to include additional one-loop Feynman diagrams
to accurately calculate the fine-tuning of the quartic
couplings. These diagrams are illustrated in Fig. 4.
Now, on the lattice the renormalization condition up to g2

will be given by

hAþðq1ÞA†
þðq2ÞAþðq3ÞA†

þðq4ÞijMS¼hððZ−1=2
A ÞþþAþðq1ÞþðZ−1=2

A Þþ−A
†
−ðq1ÞÞððZ−1=2

A ÞþþA
†
þðq2ÞþðZ−1=2

A Þþ−A−ðq2ÞÞ
×ððZ−1=2

A ÞþþAþðq3ÞþðZ−1=2
A Þþ−A

†
−ðq3ÞÞððZ−1=2

A ÞþþA
†
þðq4ÞþðZ−1=2

A Þþ−A−ðq4ÞÞijbare
ð51Þ

Analogous equations hold for the other Green’s functions which involve the other matrix elements.
To provide a comprehensive overview, we revisit a collection of lattice results discussed in Ref. [21].

ZLR;MS
A ¼ 1 −

g2CF

16π2

�
½16.9216 − 3.7920α − ð1 − αÞ log ða2μ̄2Þ�

�
1 0

0 1

�
− 0.1623

�
0 1

1 0

��
ð52Þ

ZLR;MS
g ¼ 1þ g2

16π2

�
−9.8696

1

Nc
þ Nc

�
12.8904 −

3

2
log ða2μ̄2Þ

�
− Nf

�
0.4811 −

1

2
logða2μ̄2Þ

��
ð53Þ

ZLR;MS
u ¼ 1þ g2

16π2

�
19.7392

1

Nc
− Nc

�
18.5638 − 1.3863αþ

�
−
3

2
þ α

2

�
log ða2μ̄2Þ

�
þ Nfð0.9622 − log ða2μ̄2ÞÞ

�
ð54Þ

ZLR;MS
α ¼ 1þOðg4Þ ð55Þ

In the context of lattice Green’s functions involving
external fields as depicted in the action, certain terms exhibit
negative powers of the lattice spacing. However, through the
summation of specific diagram groups, namely diagrams
(16, 20, 23, 26, 27), diagrams (18, 25), diagrams (17, 24), and
diagrams (19, 21), these negative powers are canceled out, as
required by gauge invariance. Furthermore, the lattice
preserves only hypercubic invariance as a subset of
Lorentz symmetry. Lorentz noninvariant terms of the

external momentum emerge in the Green’s functions, such
as

P
ρðq1ρÞ4=ðq21Þ2; however, these terms also cancel out

upon summation of all diagrams. Having checked that
alternative choices of the external momenta give the same
results for the differences between lattice and continuum
Green’s functions, we present them only for the case of two
zero squark momenta. It is worth mentioning that the errors
on our lattice expressions are smaller than the last
shown digit.

hA†α1
þf1

ðq1ÞA†α2
þf2

ðq2ÞAα3
þf3

ðq3ÞAα4
þf4

ðq4ÞiMS;1 loop − hA†α1
þf1

ðq1ÞA†α2
þf2

ðq2ÞAα3
þf3

ðq3ÞAα4
þf4

ðq4ÞiLR;1 loop

¼ g4

16π2
1

N2
c
½14.2135ð1 − N2

cÞðδf1f4δf2f3δα1α4δα2α3 þ δf1f3δf2f4δ
α1α3δα2α4Þ

þ ð30.3230þ 6.5648α − 1.8960α2 − 8.0969N2
c − 2.9562αN2

c þ 2.5892α2N2
c − 1.8960NcNf

− ð1=2 − α2=2þ N2
c þ 3αN2

c=4þ 3α2N2
c=4 − NcNf=2Þ logða2μ̄2ÞÞ

× ðδf1f4δf2f3ð−δα1α4δα2α3 þ Ncδ
α1α3δα2α4Þ þ δf1f3δf2f4ð−δα1α3δα2α4 þ Ncδ

α1α4δα2α3ÞÞ� ð56Þ
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hA†α1
þf1

ðq1ÞAα2
þf2

ðq2ÞA†α3
−f3ðq3ÞA

α4
−f4ðq4ÞiMS;1 loop − hA†α1

þf1
ðq1ÞAα2

þf2
ðq2ÞA†α3

−f3ðq3ÞA
α4
−f4ðq4ÞiLR;1 loop

¼ g4

16π2
1

N2
c
½−1.8246δf1f3δf4f2ðð2þ N2

cÞδα1α3δα4α2 þ Ncð−4þ N2
cÞδα1α2δα4α3Þ þ 14.2135ð1 − N2

cÞδf1f2δf4f3δα1α2δα4α3

− ð−26.5310 − 10.3568αþ 1.8960α2 þ 6.1166N2
c þ 6.7483αN2

c − 2.5892α2N2
c − 1.8960NcNf

þ ð−1=2þ α − α2=2 − N2
c − αN2

c=4þ 3α2N2
c=4þ NcNf=2Þ log ða2μ̄2ÞÞ

× δf1f2δf4f3ð−δα1α2δα4α3 þ Ncδ
α1α3δα4α2Þ� ð57Þ

hAα1
þf1

ðq1ÞAα2
−f2ðq2ÞA

α3
þf3

ðq3ÞAα4
−f4ðq4ÞiMS;1 loop − hAα1

þf1
ðq1ÞAα2

−f2ðq2ÞA
α3
þf3

ðq3ÞAα4
−f4ðq4ÞiLR;1 loop

¼ g4

16π2
1.8975
N2

c
ðð2þ N2

cÞ × ðδf4f1δf2f3δα4α1δα2α3 þ δf4f3δf2f1δ
α4α3δα2α1Þ

þ Ncð−4þ N2
cÞ × ðδf4f1δf2f3δα4α3δα2α1 þ δf4f3δf2f1δ

α4α1δα2α3ÞÞ ð58Þ

hAα1
þf1

ðq1ÞA†α2
þf2

ðq2ÞAα3
þf3

ðq3ÞAα4
−f4ðq4ÞiMS;1 loop − hAα1

þf1
ðq1ÞA†α2

þf2
ðq2ÞAα3

þf3
ðq3ÞAα4

−f4ðq4ÞiLR;1 loop

¼ g4

16π2
0.4913
N2

c
ð−ð2þ 0.1739αþ N2

c þ 2.3923αN2
cÞ × ðδf4f1δf2f3δα4α1δα2α3 þ δf4f3δf2f1δ

α4α3δα2α1Þ

þ Ncð4þ 0.1739α − N2
c þ 2.3923αN2

cÞ × ðδf4f1δf2f3δα4α3δα2α1 þ δf4f3δf2f1δ
α4α1δα2α3ÞÞ ð59Þ

By combining the lattice expressions with the MS-renor-
malized Green’s functions calculated in the continuum [see
Eq. (51)], we obtain the following renormalization factors
and the coefficients of the counterterms

Zλ1
LR;MS ¼ 1þ g2

16π2

�
35.0365

Nc
− 25.0526Nc − 2.8298Nf

�

ð60Þ

λ2
LR;MS ¼ g4

16π2

�
−0.9488

�
1þ 2

N2
c

��
ð61Þ

λ3
LR;MS ¼ g4

16π2

�
28.427
N2

c

�
ð62Þ

λ4
LR;MS ¼ g4

16π2

�
16.0381þ 3.6493

N2
c

�
ð63Þ

λ5
LR;MS ¼ g4

16π2

�
0.4913

�
1þ 2

N2
c

��
ð64Þ

λF1
LR;MS ¼ g4

16π2
ð28.427Þ ð65Þ

λF2
LR;MS ¼ g4

16π2

�
0.9488

�
4

Nc
− Nc

��
ð66Þ

λF3
LR;MS ¼ g4

16π2

�
−
21.5121

Nc
þ 1.8246Nc

�
ð67Þ

λF4
LR;MS ¼ g4

16π2

�
14.213

�
−

3

Nc
þ Nc

��
ð68Þ

λF5
LR;MS ¼ g4

16π2

�
0.4913

�
−

4

Nc
þ Nc

��
ð69Þ

We note that the above factors are gauge independent, as
they should be in the MS scheme. Moreover, as anticipated
from the continuum computations, these couplings acquire
only finite (albeit nonzero) values.
We also present results for the case where the number of

flavors is Nf ¼ 1. In this context, we provide the values for
the five quartic terms, as there is no “Fierz” version with
only one flavor. These terms are denoted as follows:

Zλ1
LR;MSjNf¼1 ¼ 1þ g2

16π2

�
−31.2567

þ 35.0366
Nc

− 25.0526Nc

�
ð70Þ

λ2
LR;MSjNf¼1 ¼

g4

16π2

�
−0.9488

�
1þ 2

N2
c
−

4

Nc
þ Nc

��

ð71Þ

λ3
LR;MSjNf¼1 ¼

g4

16π2

�
28.427
N2

c
−
21.5121

Nc
þ 1.8246Nc

�

ð72Þ
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λ4
LR;MSjNf¼1 ¼

g4

16π2

�
14.213

�
1þ Nc −

3

Nc

�

þ 1.8246

�
1þ 2

N2
c

��
ð73Þ

λ5
LR;MSjNf¼1 ¼

g4

16π2

�
0.4913

�
1þ 2

N2
c
−

4

Nc
þNc

��
ð74Þ

These results are essential for understanding the behavior
of the theory in this particular flavor sector.

IV. OUTLOOK

In this work we calculate Green’s functions with four
external squark fields in SQCD, in the Wess-Zumino
gauge. The fine-tunings of the quartic couplings are
calculated employing Wilson fermions and gluons by
studying the vertex corrections for the corresponding
interactions. To extract these quantities in the MS scheme,
we compute the relevant Green’s functions in two regula-
rizations: dimensional and lattice. The lattice calculations
are the crux of this work; and the continuum calculations
serve as a necessary introductory part, allowing us to relate
our lattice results to the MS scheme.
The perturbative renormalization of these couplings

signifies also the completion of all renormalizations (fields,
masses, couplings) in the Wilson formulation [21–23]. The
results of this work will be particularly relevant for the
setup and the calibration of lattice numerical simulations of
SQCD. In the coming years, it is expected that simulations

of supersymmetric theories will become ever more feasible
and precise.
A natural extension of this work would be the perturba-

tive calculations of all fine-tunings in SQCD and on the
lattice using chirally invariant actions. In particular, the
overlap action can be used for gluino and quark fields, in
order to ensure correct chiral properties. Simulating overlap
fermions is a clear challenge, given the requirements in
CPU time. On the other hand, the number of parameters
which need fine-tuning is minimized, and this is a notable
advantage for these kinds of calculations. Nevertheless,
fixing the correct values of this minimal set of parameters
still entails calculating a plethora of Green’s functions.
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